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Abstract

Scene illumination in digital photography is of limited
types, including Daylights of various temperatures, Horizon,
Incandescent and various Fluorescents. For white balancing
purposes in consumer digital photography, it is often
sufficient to compute the scene illumination with limited
accuracy. Therefore, rather than estimating the tristimulus
color value or the illumination spectrum as a continuous
(vector) variable, we can detect the illumination via
hypothesis testing and selecting from a finite set of candidate
illuminations. An illumination detection approach is
introduced in this work by incorporating linear
decomposition of the spectral surface reflectance.

Illumination estimation, illumination detection,
hypothesis testing, linear decomposition, white balancing.

Introduction

Illumination estimation is an important issue in both color
science and digital photography applications. A number of
illumination estimation techniques have been proposed in
the past, while many new ones are being introduced at each
conference and by each new camera model, which shows the
importance of this research area.

There are basically two groups of techniques. The first
group of techniques treats the color or the spectrum of the
unknown illumination as a continuous vector variable and
uses signal estimation approach.1 Examples include the
widely used gray-world algorithm,2 estimation using
specular reflectance,3 the neural network approach4,5 and the
linear space approach,6 among many others.

The other group of techniques is a relatively new
development. Rather than estimating a continuous variable,
this type of techniques determines the illumination type by
selecting from a finite set of candidate illuminations. To
differentiate these two groups of techniques, we call this
second group illumination detection, drawing the
analogy between signal estimation and signal detection in
communications theory.1 Illumination detection is a
promising approach because  in the real world, the scene
illumination is only of limited types, such as various
daylights, horizon, incandescent and several fluorescents.
Furthermore, for many applications including digital
photography, it is acceptable to have an estimation of finite
accuracy. Color by correlation7 is an excellent example of
the illumination detection approach.

Illumination estimation and detection are closely related
to each other. For example, the binary histogram of the

colors present in an image is depends on the scene
illumination and thus can be used to compute the scene
illumination. Both illumination estimation4 and
illumination detection7 approaches have been introduced
based on the same statistic. In practice, one can compute the
illumination using either the estimation or the detection
approach based on consideration of accuracy and execution
speed.

In this work, we will introduce a new illumination
detection technique using linear projection of the spectral
surface reflectance. It is well known that the reflectance of
most surfaces and the spectral power distribution of many
illuminations can be approximated very well in a low-
dimensional linear space.8 Compared to other techniques,
linear decomposition of reflectance and illumination takes
into account the physical properties of the surface and the
illumination and simplifies the illumination estimation (or
detection) problem by providing a compact representation. A
number of techniques have thus been developed using linear
decomposition.6,9–12 However, they all can be seen as taking
an estimation approach. In this paper, we will put the linear
projection technique into an illumination detection
framework.

There are several potential advantages to combine the
detection approach with the linear projection technique. The
first is that, in the detection framework using hypothesis
testing, the spectral power distribution of the candidate
illumination is assumed to be known for each hypothesis (or
equivalently, for each candidate illumination). Therefore, a
lot more information is available to solve for the surface
reflectance. Another advantage is that, by knowing the
spectral power distribution of the candidate illumination, we
can avoid the problem of linearly decomposing the
illumination spectrum. As we have shown before,12

although a 3D linear space is usually good enough for
surface reflectance, as much as 6 dimensions are often needed
to approximate the illumination spectrum. For a typical
RGB image, we only have 3 known color values at each
pixel, the same number as the 3 unknown surface reflectance
coefficients. Therefore, by avoiding decomposing the
illumination spectrum, the ambiguity of solving for an
underdetermined problem is avoided.

In the next section, we are going to present our new
illumination detection technique by breaking it into several
parts. We first discuss projecting the surface reflectance
onto a linear space. Then we discuss how linear projection
can be used in an illumination detection framework. One
issue for linear projection-based techniques is that the
computation is often very high. We avoid this pitfall by
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selecting representative pixels from the image. This greatly
reduces the computational load. Finally, we give some
preliminary experimental results to conclude this paper.

Illumination Detection in Linear Space

Linear Decomposition of Spectral Surface
Reflectance

Let us sample each spectrum at a discrete number of
wavelengths within the visible range. We index these
sample wavelengths using n=1, …, N. Let L represent the
spectral power distribution of the illumination, R k represent
the surface reflectance at pixel k=1, …, K and Sj represent
sensor sensitivity functions with j=1, …, J where J is the
number of sensors. For example, for a 512x512 image,
K=512 x 512=262,144, and for an RGB image, J=3. The
reflectance at each pixel Rk is constrained to be between 0
and 1 by their own physical properties. The color value of
sensor j at pixel k is represented by fk,j. The value is given
by the sum of the product of L, Rk, and Sj, i.e.

f L n R n S nk j k j
n

N

, ( ) ( ) ( )= × ×
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∑η
1

     (1)

where η is a scaling factor. For digital photography
applications, η is a function of exposure level and other
parameters and is often difficult to estimate. The goal of
illumination computation is to compute from the pixel
color values in the image the sensor response to the
illumination itself, i.e.
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Or even ideally, the goal is to estimate L itself.
As discussed previously, the spectral reflectance

function R k can be well approximated by using a low-
dimensional linear model. That is \
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where {Bm} is the set of basis functions for reflectance, {βk,m}
are weighting coefficients and M  is the dimension of the
linear space. The best basis in the least square sense is the
set of eigenvectors of the covariance matrix of the
reflectance, which has the largest eigenvalues. In our
implementation, the basis functions for reflectance are
derived from a set of more than 20,500 samples containing
Munsell patches as well as measured reflectance spectrum
from two databases described in [13] and [14].  

Hypothesis Testing Using Linear Decomposition
Hypothesis testing for signal detection is a widely used

technique. In our algorithm, we take a straightforward
approach by making each hypothesis corresponding to a
candidate illumination type. Let D be the number of
hypotheses. Thus, we have pre-selected D candidate

illuminations, 
dL , d=1, …, D, and hypothesis Hd is that

the unknown scene illumination L is equal to 
dL , i.e.
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The essence of signal detection is to compute a cost
function Cd for each hypothesis. The one with the lowest
cost is declared the winner (other variations are possible
though). In the following, we show how to compute a very
simple yet powerful cost function.

By using the reflectance basis functions mentioned
above, we can rewrite eq. (3) as
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For RGB images, we have J=3; we also use M=3 basis
functions for surface reflectance. Henceforth, at pixel k, we
have

  F Ak
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are 3x1 vectors, and Ad is a 3x3 matrix with entries Aj,m
d.

Thus, we have

  
β

ηk
d d

kinv A F= 1
( ) .                            (6)

If the surface reflectance lies exactly in the 3D linear space
spanned by {B1, B2, B3}, then when hypothesis d is true, we
have

 β βk
d

k= *  where βk
*

denote the actual decomposition coefficients. On the other
hand, since most surface reflectance can be very well
approximated by this linear space, we know that

 β βk
d

k≈ *
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if hypothesis d is true. Therefore, the estimated reflectance
for pixel k,

    
R n B nk

d
k m
d

m
m

( ) ( ),=
=

∑β
1

3
(7)

is close to the actual reflectance Rk
*(n). In contrast, when the

hypothesis is false, the estimated reflectance will be different
from the actual value.

To calculate the cost function for hypothesis testing, we
use the constraints associated with the surface reflectance. In
theory, many constraints can be used together. However, for
fast computation, we choose to use only one, which is that
the reflectance is limited between 0 and 1. Unfortunately,
since we don’t know the scaling factor η, we can only use
the condition that the reflectance should be positive. The
cost function is then defined as
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Note that in eq. (8), the unknown value η and its inverse
have canceled out each other.

The intuition behind our cost function is that for the
true hypothesis, the estimated reflectance will be close to the
true reflectance and thus mostly be positive. Therefore, the
cost will be small. However, for false hypotheses, the
reflectance will swing wildly and have negative values. By
removing the negative values, the cost value will be large
for these false hypotheses. It is interesting to note that
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k m
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1

3
0

can be seen as a sub-optimal solution to the constrained
minimization problem:

min || ( ) ( ) ( )||
( )
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subject to the constraint 0 ≤ Rk(n), which is closely related
to the problem solved in our previous work.12

Finally, the hypothesis with the lowest cost is declared
the winner (winner-take-all) and Ld is used as the estimate of
the scene illumination. Other variations to this strategy can
be used too.

Computation Complexity and Pixel Selection
We give a count of multiplications needed for the

algorithm. For each hypothesis in our algorithm, we need to
compute the matrix Ad and its inverse. To compute Ad,
2N multiplications are needed. To invert a 3x3 matrix,
several dozen multiplications are required. It should be
noted that Ad and its inverse only have to be computed once

for each hypothesis and thus the cost is negligible. Under
each hypothesis, it costs 9 multiplications to calculate the
decomposition coefficients

d
kβ ,

and 3N multiplications to calculate the estimated reflectance.
To compute the final cost function, only N more
multiplications are needed, since Ld(n)sj(n) has been
computed when we calculate the matrix Ad. Therefore, the
number of multiplications for each hypothesis is
approximately 4NK, and the number for the whole
algorithm is 4NKD, where N is the number of wavelength
samples, K is the number of pixels and D is the number of
hypothesis.

Since the number of pixels used for calculation is
linearly proportional to the computation cost, it is of great
interests to devise efficient algorithms to select pixels to
participate in the detection process. In our previous work12

the set of possible color for various illuminations is
computed from the set of Munsell chips and compared with
each other. It is noticed that colors with large values are
more indicative of the illumination type. Therefore, in our
illumination detection algorithm, a pixel is selected only if
it has a large value in at least one color channel. In our
tests, we find that 1,000 pixels are often enough for 1~3
mega-pixel-size pictures. Overall, the algorithm is extremely
efficient to compute.

Table 1. Description of test images.
Num Description Camera

1 Lightbooth; Figure 1(a); CIE A Sony
2 Lightbooth; Figure 1(a); Horizon Sony
3 Lightbooth; Figure 1(a); Coolwhite Sony
4 Lightbooth; Figure 1(a); U30 Sony
5 Office; Figure 1(b); U30 Sony
6 Office; Scene not shown; U30 Nikon
7 Office; Scene not shown; U30 Nikon
8 Outdoor; Figure 1(c); Daylight Nikon
9 Outdoor; Scene not shown;

Daylight
Nikon

Experimental Results

We use the raw data output from two digital still cameras
manufactured by Sony and Nikon, respectively, in our
experiments. Their sensitivities are measured using a mono-
chromater. Pictures are taken in light-booth, office and
outdoor environments with examples shown in Figure 1. A
description of these images is given in Table 1. The actual
spectral power distribution of the scene illumination is
measured at the same time when the images are captured.
The tri-stimulus values of the true illumination can therefore
be computed by multiplying the measured scene
illumination with the measured camera sensitivities. We
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compare our algorithm with the gray-world algorithm and
the so-called “modified gray-world” algorithm.15

In our algorithm, the number of wavelength samples is
chosen to be 33 (N=33), 1,000 pixels are selected for each
picture (K=1,000) and 18 hypotheses are used (D=18),
including Daylights, Horizon, Incandescent and some typical
Fluorescents.

In Figure 2, we compare our algorithm with the gray-
world algorithm and the modified gray-world algorithm by
using the chromaticity error. The error is computed by first
normalizing the color value with respect to the sum of R, G
and B, i.e. r=R/(R+G+B) and similarly for g. The error
metric is computed as

( ) ( )* *r r g g− + −2 2

where r* and g* are the actual illumination value as
mentioned above. Note that the actual illumination is the
same as one of the candidate illuminations for image 5, and
our algorithm made correct detection resulting zero error.

Table 2. Comparison of minimum, mean and
maximum errors for our algorithm, the gray-
world algorithm and the modified gray-world
algorithm.

Minimum Mean Maximum
Gray-world 0.017 0.174 0.565

Modified gray-world 0.020 0.079 0.255
Our algorithm 0 0.057 0.125

The (minimum, mean, maximum) error triplets for the
three algorithms are shown in Table 2. We note that our
algorithm outperforms the other two algorithms on average.
It especially excels when there are dominant colors in the
scene such as images 1 through 4.

Finally, we look at the surface reflectance computation
(eq. 7) during the illumination detection process. We use
image 2 as an example. The actual illumination is Horizon.
Shown in Figure 3 are the computed surface reflectances for
8 pixels selected for detection. The illumination hypotheses
shown are Horizon and D40. It is seen that the computed
surface reflectance has more negative values for D40
hypothesis than for Horizon hypothesis. This confirms that
our premise for the new illumination detection algorithm is
correct, i.e. the true hypothesis illumination will have less
negative components in the computed surface reflectance.
Thus, by applying the surface reflectance positivity
constraint and using eq. 8, we are able to detect the correct
illumination.

(a)

(b)

(c)

Figure 1. Examples of raw image data used in experiments.
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Figure 2. Comparison between the new algorithm, the gray-
world algorithm and the modified gray-world algorithm. The 
error metric is 

 2*2* )()( ggrr −+− . 
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Figure 3. Surface reflectance computation for different illumination hypotheses. The actual illumination is Horizon.
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