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Abstract 

This paper describes the optimization of the color matching 
functions (cmfs) of an individual observer based on 
metameric pairs using a variation method. This is a so 
much simplified method for estimating rough and ready 
cmfs of an individual observer in comparison with past 
experiments. Experiments have been performed using 
measured metamer spectral data. 

1. Introduction 

The cmfs of the standard observer are the fundamental 
basis of colorimetry. The CIE color matching functions 
(cmfs) were defined simply as an average of the functions 
of observers with normal color vision, and the standard 
colorimetric observer was defined as a hypothetical one 
that has the average cmfs so defined. Therefore, the cmfs 
of real observers with normal color vision do not agree 
exactly with those of the CIE standard colorimetric 
observer’s. 

This paper describes the optimization of the cmfs of an 
individual observer based on metameric pairs using a 
variation method.1-7 This is a so much simplified method 
for estimating rough and ready cmfs of an individual 
observer in comparison with past experiments. The 
underlying assumption for the optimization is that the 
optimum cmfs will predict that the integrated cone 
responses of a metameric pair are equal. A feature of the 
optimization method is that the color difference in a 
metamer pair can be optimized to 0 at a boundary 
condition in the variation method, and the smoothness of 
the modified cmfs result from the cost function of the least 
mean square of modified values in the variation method.  

The integrated cone responses of a metameric pair are 
not equal when an individual metameric pairs are 
evaluated by the CIE cmfs because of the difference 
between the CIE cmfs and those of the individual observer. 
Using the proposed optimization method, the color 
difference in the metamer data has been decreased to 

0=∆E  with the modified cmfs predicting the cmfs of the 
individual observer.  

2.Deriving optimal Color-Matching Functions 

2.1. Basic Algorithm 
Two objects with different spectral reflectance 

functions ( )λρ  and ( )λρ′  give rise to metamer stimuli when 
illuminated by ( )λS  if their corresponding tristimulus 
values ZYX ,,  and ZYX ′′′ ,,  are equal as follows: 
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The proposed method for optimizing the cmfs of an 
individual observer using a variation method is derived 
below. 

For convenience, symbols are 

,,, 321 ZXYXXX ===  

 ( ) ( ) ( ) ( ) ( ) ( ),,, 321 λλλλλλ zqyqxq ===          ( )2  

( ) ( ) ( ) ( )( ),,, 321 λλλλ qqqq =  

( ) ( ) ( ).λλρλ SJ =  

Let ( ) ( )3,2,1,* =iqi λ  be the modified cmfs with a 
variation term ( ) ( )3,2,1, =∆ iqi λ , 

 ( ) ( ) ( ) ( ),3,2,1,* =∆+= iqqq iii λλλ  
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* t
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Let ( ) ( )λρλρ mr ,  be a spectral reflectance of a reference 
data and that of a metamer data, respectively. The 
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difference between the reference and the metamer object 
color stimuli is as follows: 

 ( ) ( ) ( ) ( ) ( )λλρλλρλ SSJ mr −=∆      ( )4   

The tristimulus values of ( )λJ∆  related to ( )λ*
iq  are 

then given by 

 ( ) ( )( ) ( ).3,2,1,** =⋅∆= iqJQ ii λλ         ( )5  

Constraints are imposed as follows on eq.(5): 
 
[Constraints on the variation method] 

 ( ) ( )( ) ( ) ( ).3,2,1,* ==⋅∆=∆ igivenconstqJQ iii λλ         ( )6  

 
[Cost function of the variation method] 

 ( ) ( )( ) λλ
λ

∆∆=∆ ∑ qcfqCF          ( )7  

where 
( )( ):λqcf ∆  cost function for each .λ  At 0=∆q  the minimum, 

( ):qCF ∆  cost function for entire wave-length range. 
 
[Constraint with unknown parameters of the variation 
method]  

 ( ) ( ) .
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where 

 ( ),3,2,1=iiµ :Lagrangian unknown parameters. 

The cf  function is expanded by using the Taylor expansion 
as 
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and the following Lagrange function is derived. 
 
[Lagrange function of the variation method] 
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where 
:f  Lagrange function of the variation method for each λ , 
:F  Lagrange function of the variation method for all 

wavelengths, 
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 A modified value q∆  is independent of q  and, based on 
eq.(11), the following equation is derived:  

 ( )( ) ( ) ( )( ) .02/ 1 =−∆=∆∆ λλλ VqqHqf        ( )12  

Equation (6) is converted as follows:  

 ( ) ( )( ) ,ii tconsqJ ′=∆⋅∆ λλ         ( )13  

where 

 ( ) ( )( ).λλ iii qJconsttcons ⋅∆−=′  

By eliminating ( ) ( )3,2,1, =∆ iqi λ  in eqs.(12) and (13), a 
linear equation of the parameters ( )3,2,1, =iiµ  are derived. 
By solving the equation for the parameters ( )3,2,1, =iiµ  the 

q∆  value and the modified cmfs are derived as follows: 

 ( ) ( )( ) ( )( ),2 11 λλλ VqHq −=∆        ( )14  

 ( ) ( ) ( ) ( )3,2,1,* =∆+= iqqq iii λλλ     ( )15  

The method derives the optimum solution over the 
entire wavelength range (see Appendix). 

2.2.Description of the Cost Function 
The cost function of the variation method is derived 

considering the CIE L*a*b* color space of the perception of 
color differences by the human visual system. The cost 
function measures the CIE L*a*b* sensitivity depending on 
variations in the CIE XYZ cmfs as follows:  
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where w (0< w) is a coefficient in the cost function. The 
first term ( )( )λqcf ∆1  in eq.(16) is for the L*a*b* sensitivity and 
the second term ( )( )λ∆qcf2  in eq.(16) is for the smoothness 
of the modified cmfs. Equation (16) is expanded using the 
Taylor expansion, and the following Hessian matrix of the 
cost function is derived : 
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The first derivative of the cost function is as follows :  
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Equations (17) and (18) are applied to the calculation of 
eq.(14). 

 The Hessian matrix (eq.(17)) is semipositive for any 
( )λq , as shown in Characteristic in the Appendix, so the 

truncated cost function (eq.(9)) is convex based on 
Theorems 1 and 2 in the Appendix. 

3. Experiments 

3.1. Experimental Data Source 
Shaw and Fairchild8)9) (1999) designed a visual 

experiment to allow observers to perform visual color 
matching between a neutral gray card of 50* =L  created 
with a Fujix Pictrography 3000 color printer, and an ACS 
VCS 10 additive mixing device. The viewing booth had 
both fluorescent daylight and incandescent illumination to 
view the colors. The seven discs in the ACS VCS 10 were 

white, red, green, blue, yellow, purple and black. The 
matching field was 8cm × 9cm, subtending a visual angle 
of ο7 . Observers were seated 30 inches from the stimuli 
and asked to make an exact match to the gray card using 
only the three primaries specified. When a color match had 
been achieved, the PhotoResearch PR650 was used to 
measure the spectral radiance of the metamer from the 
observer’s angle of view. Each observer was asked to 
repeat the experiment 10 times. In this experiments of our 
paper, matamer data of two observers are employed. 

3.2. Optimization of cmfs 
In optimizing cmfs, the metamer data in section 3.1. 

were employed. The experimental data were within a 
common wavelength range of 400nm-700nm (in 5nm 
steps). The spectrum data for each observer were averaged 
to reduce experimental noise. In the experiments, the cmfs 
of the CIE 1931 standard colorimetric observer were used 
as the standard reference to derive the modified cmfs 
optimized to an individual observer. The cost function of 
section 2.2. was employed. The weighting coefficient was 

210=ω . 
Figure 1, 2 shows the modified cmfs for observers 1, 2, 

respectively. In the optimization of Figure 1, 2, the 
constraint of eq.(6) was imposed on the variation method 
and consti=0, (i=1,2,3) for 0=∆E . Figure 1 is almost the 
same as the CIE 1931 cmf. In Figure 2, except for the 
change in the range from 550nm-700nm in the modified 
( )λz  function, the modified cmfs are smooth and realistic. 

As for the smoothness of the modified cmfs, the least mean 
square does not necessarily ensure the continuity of the 
first-order derivative, although it is a general constraint for 
smoothness. 

3.3. Discussion 
In optimization problems, there is a difficulty in 

distinguishing between experimental error and the 
optimization error. In the proposed optimization method, 

0=∆E  is certain and thus, the optimization error can be 
neglected and only experimental error is included in the 
results. This technique can be repeated across a number of 
metameric matches to obtain a good statistical estimate of 
an individual observer’s cmf. The solution of the method 
has an unbiased property against the cmfs of an individual 
observer based on expectations (see Appendix). 

4. Conclusions 

The optimization of the cmfs of individuals using a 
variation method has been described. In the variation 
method, metamer data has been employed as the source 
data.  

A feature of the optimization method is that the color 
difference in a metamer pair can be optimized to be 0 at a 
boundary condition in the variation method, and the 
smoothness of the modified cmf results from the cost 
function of the least mean square of modified cmf values in 
the variation method.  
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(a) modified x  
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(b) modified y  
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 (c) modified z  

 Figure 1 Modified cmfs for observer 1. 

 

 
Experiments have derived the modified cmfs for 

individual observers and its validity in means of 0=∆E . 
Hereafter, we will apply the optimization method to 

other problems in color science. 
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(b) modified y  
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 (c) modified z  

Figure 2 Modified cmfs for observer 2. 
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Appendix 

The relationship between the Hessian matrix of the cost 
function and the convexity of the cost function has been 
discussed in the text4)6). The relationship between the 
Hessian matrix and the convexity of the truncated cost 
function employed in this paper has not been discussed. 
Theorem 1 and theorem 2 describe the relationship. 

Theorems and a characteristic of the optimization 
method and the property of the solutions are also included. 

 [Definition] 
A matrix M  is defined to be semipositive if 

.,0 qMqqt ∀≤  

 [Theorem 1] 
If the Hessian matrix of the cost function is 

semipositive at ( )Rqq ∈ , there exists a region of q∆  values 
around q  in which the truncated cost function ( )qcft  is 
convex, where R  indicates the defined range for the 
truncated cost function ( )qcft . 

 [Proof] 
Using a Taylor expansion based on the averaging 

theorem, the cost function cf  is described as follows: 

 ( ) ( )qqcfqcf ∆+=′  

 ( ) ( ) ( )( ) ( )( ) ,12/1 qqqHqqqcfqcf t ∆−+′∆+∆∇+= ττ  

 ( ),10 <<∃ ττ        ( )1.A  

where 

 ,qqq −′=∆  

 τ : parameter of the averaging theorem. 
 

On the other hand, the Taylor expansion with a high 
ordered term nR  is as follows: 

 ( ) ( ) ( ) ( )( ) ( ) n
t RqqHqqqcfqcfqcf +∆∆+∆∇+=′ 2/1    ( )2.A  

The nR  term can be calculated using eqs.(A.1) and (A.2),  

 ( ) ( )( ) ( )( ) .2/1 qqHqqHqR t
n ∆−−+′∆= ττ     ( )3.A  

The Hessian matrix of the cost function cf  is 
semipositive at q  and the following equation holds: 

 ( )( ) ( ) .2/10 qqHq t ∆∆≤      ( )4A   

The following relationship can be derived using 
eqs.(A.2) and (A.4), 

 ( ) ( ) ( ) .nRqqcfqcfqcf +∆∇+≥′          ( )5A  

For each value of ( ),,, 2121 qqqqqqq ′<<′′=′′=′   

 ( ) ( ) ( ) ( ),1
11 nRqqcfqcfqcf +∆∇+≥′       ( )6A  

 ( ) ( ) ( ) ( ),2
22 nRqqcfqcfqcf +∆∇+≥′      ( )7A  

where 

 ,11 qqq −′=∆  

 ,22 qqq −′=∆  

The weighted combination of eqs.(A.6) and (A.7) is:  

( ) ( ) ( ) ( ) ( ) ( )( )qqqqcfqcfqcfqcf −′−+′∇+≥′−+′
2121 11 ωωωω    

( ) ( ) ( )( )21 1 nn RR ωω −++           ( )8A  

By applying the relation ( ) 21 1 qqq ′−+′= ωω in eq.(A.8), the 
following equation is derived:  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )21
2121 111 RRqqcfqcfqcf ωωωωωω −++′−+′≥′−+′  ( )9A  

and the values of 21, qq ∆∆  values which satisfy the relation 
are found out: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) .|11||1| 2121
21 qqwcfqcfqcfRR nn

′−+′−′−+′≤−+ ωωωωω  ( )10A  

In eq.(A.10), the order of 21, qq ∆∆  on the left side of 
eq.(A.10) is two orders higher than the order of 21, qq ∆∆  on 
the right side of eq.(A.10). For sufficiently small 21, qq ∆∆  
values, eq.(A.10) is satisfied. Based on the relationship in 
eq.(A.10), ( ) ( )21 , nn RR  terms can be ignored without changing 
the relationship in eq.(A.9), and the following relation 
holds:  

 ( ) ( ) ( ) ( )( ) .11 2121 qqcfqcfqcf tt
′−+′≥′−+′ ωωωω     ( )11A  

Since ( ) ( )qcfqcf t= , ( )( ) ( )( )2121 11 qqcfqqcf t
′−+′=′−+′ ωωωω  holds. 

Therefore, the following relation is derived:  

 ( ) ( ) ( ) ( )( ) .11 221 qqcfqcfqcf ttt
′−+′≥′−+′ ωωωω    ( )12A  

The relation in eq.(A.12) is the condition of convexity 
for the function cf  at q  and various 21, qq ∆∆  values 
construct a region around q  in which the cost function is 
convex. 
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 [Theorem 2] 
If the truncated cost function ( )qcf t  is convex at a 

coordinate q , the Hessian matrix of the cost function is 
semipositive at the coordinate q . 

 [Proof] 
Based on the assumption of the theorem and on the 

definition of tcf , 

 
( ) ( ) ( ) ( )( )

( )( )
( ) ( )( ) ( ) ( ) ( ) .2/

11

212212122

212

2121

qqqHqqqqqcfqcf
qqqcf

qxqcfqcfqcf
t

ttt

−−+−∇+=
−+=

−+≥−+

τττ
τ

ττττ
  ( )13.A  

By the modification of eq.(A.13), the following 
equation is derived,  

( ) ( )( ) ( )( )21221 qqqcfqcfqcf tt −∇≥− ττ            

( ) ( ) ( ) ( ),2/1 21221 qqqHqq −−+ ττ      ( )14.A  

and divided by τ , 

( ) ( )( ) ( )( ) ( )( ) ( ) ( ),2/1 2122121221 qqqHqqqqqcfqcfqcf tt −−+−∇≥− τ  ( )15.A  

Under the condition of 0→τ , the following equation 
is derived:  

 ( ) ( )( ) ( )( )2122211 qqqcfqcfqcf −∇≥− .    ( )16.A  

Let 21,qq  be qqqqq =∆+= 21 ,  and eq.(A.16) becomes:  

 ( ) ( ) ( ) ,qqcfqcfqqcf tt ∆∇+≥∆+        ( )17.A  

and ( ) ( )qcfqcf t = , eq.(A.17) becomes as follows:  

 ( ) ( ) ( ) .qqcfqcfqqcft ∆∇+≥∆+          ( )18.A  

The Taylor expansion of the left side of eq.(A.18) is 

 ( ) ( ) ( ) ( )( ) ( ) .2/1 qqHqqqcfqcfqqcf t
t ∆∆+∆∇+≥∆+   ( )19.A  

From eqs.(A.18) and (A.19), the following relationship 
is derived: 

 ( )( ) ( ) ,2/10 qqHq t ∆∆≤     ( )20.A  

and ( )qH  becomes semipositive. 

 [Theorem 3] 
The method derives the optimum solution based on the 

cost function CF (eq.(7)) restricted by constraints (eq.(8)), 
under the assumption that the continuity of the first-order 
derivative about cmfs is not considered. 

 [Proof] 
 Omitted. 

 [Theorem 4] 
 The solutions of the method are unbiased against the 

cmfs of an individual observer based on expectations. 

 [Proof] 
 Omitted. 

 [Characteristic] 
 The Hessian matrix of eq.(17) is semipositive for any 

value of q . 

 [Proof] 
 Omitted. 
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