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Abstract 

Estimation of the spectral characteristics of color image 
sensors is an important problem. The effective spectral 
response of a color imaging system may vary from the 
color filter specification for a variety of reasons. However, 
color correction and color constancy algorithms require 
precise characterization of the color filter response in order 
to attain accurate color reproduction.  Also, camera 
systems need to be qualified and calibrated quickly in a 
manufacturing environment. CMOS image sensors, which 
are becoming more popular, complicate the problem, since 
noise levels on CMOS sensors have yet to equal their CCD 
counterparts. For these reasons, a fast and reliable 
characterization of the color sensor response is needed. 
This paper presents an approach to the problem using 
numerical regularization techniques. In particular, 
Tikhonov regularization is used to determine the spectral 
response of a color image sensor given the digital output 
codes from an image with known reflectances under a 
known illuminant. 

Introduction 

Accurate knowledge of a color image sensor’s spectral 
response is essential in order to guarantee accurate color 
reproduction. Color correction and color constancy 
algorithms require precise knowledge of the color filter 
response in order to attain high image quality. Although 
the color filter response may be specified, very often the 
in-situ response varies from the specification. Sensor to 
sensor and lot to lot variations of color filter response are 
to be expected, however these variations, even if within 
specified bounds, may be outside the tolerance required for 
accurate color reproduction. Furthermore, large deviations 
from the specified color sensor response may indicate a 
process or fabrication problem. Therefore, it would be 
advantageous to have a quick and robust method to identify 
excessive variations in color response in order to qualify 
and calibrate color image sensors. Several sources are 
responsible for variations in color response. These include 
optical crosstalk, which occurs when light passes through 
one filter of a color filter array but is actually detected at 
an adjacent pixel with a different color filter. Electrical 
crosstalk occurs when electron-hole pairs generated from 
captured photons in one pixel migrate to an adjacent pixel 
and are collected there. Additionally, high temperatures are 

required for the fabrication of solid-state sensors, which 
can cause degradation in the response of some color filters. 
Finally, lens induced chromaticity errors can cause 
variations in the system color response. Techniques have 
been previously identified for indirectly recovering the 
color response. These methods have been primarily 
concerned with relatively low noise applications. CMOS 
image sensors are becoming more prevalent, however they 
suffer from poorer noise performance. Any process of 
recovering the spectral response of CMOS sensors must be 
robust with respect to noise. This paper will address 
exactly this problem, namely color sensor response 
recovery in noisy environments. The response recovery 
problem requires the linear inversion of a discrete ill-posed 
problem. These types of problems have been studied 
extensively in other areas of science and engineering. A 
number of numerical regularization methods have been 
developed to attack these problems. This paper will present 
the results of applying one of these techniques, namely 
Tikhonov regularization, to the sensor recovery problem. 
The subsequent sections will present a formal statement of 
the problem, followed by a review of previous work in the 
area. The next section will discuss the technique of 
regularization as applied to this problem. This will be 
followed by a discussion of experimental results and finally 
the conclusions drawn from them. 

Problem Statement 

Most color imaging systems consist of three or perhaps 
four different spectral filters. This paper will assume, 
without loss of generality, three spectral bands. The signal 
from the ith band for a given pixel j is:  

∫= ωωωω diCjRE
j

ib )()()(    (1) 

Here E(ω) is the spectral power distribution of the 
illuminant, Ri(ω) is the reflectance of the target at pixel j 
and Ci(ω) is the spectral response of the ith color filter. The 
limits of integration are over the wavelength range of 
interest, usually the visible spectrum. Measurements of E 
and R are generally provided on a discrete grid spanning 
this range. The test target will consist of a collection of m 
reflectances sampled at n points. For this paper a MacBeth 
ColorChecker chart will serve as the reflectance target so 
m=24. The illuminant is assumed to have a smooth spectral 
response and a sampling grid of n<m is used. This implies 
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that measurements of E and R sampled at a higher 
resolution must be integrated to coincide with this grid. 
Consequently, an error free discretization of (1) can be 
written in matrix form as: 

B = A C      (2) 

The illuminant and target reflectance have been combined 
into a single m×n matrix, A = R E, where E is a diagonal 
n×n matrix containing the measurements of E(ω) and R is 
an m×n matrix containing the measurements of R(ω). The 
digital output codes from the camera are in the m×3 matrix 
B. The m×3 matrix C represents the spectral responses of 
the three color channels.  Noise is introduced into the 
values of B due to the physics of the light detection 
process. Quantization of the sensed light also introduces a 
noise component. Additionally, offsets of the digital codes 
can contribute to the noise if not explicitly corrected. There 
is also an implicit scaling to convert from physical units to 
the digital output codes of the sensor.  Consequently the 
actual output of the sensor is: 

bi = (A ci + ei) g     (3) 

where ei is the noise in the ith color channel and g is the 
implicit system gain. Since the computation of the spectral 
responses will be done on a per channel basis, the matrices 
B and C have been replaced with individual vectors, bi and 
ci, for each of the color channels.  The sensor is assumed to 
be linear. If not the data must be linearized using, for 
example, methods mentioned in [4]. 

Previous Work 

Several methods have been previously suggested for 
characterization of color sensors. In [1], the technique of 
Projections Onto Convex Sets (POCS) was applied to the 
problem. Constraints on the spectral response C, form a 
number of convex sets that are searched using POCS to 
arrive at a solution that satisfies all the constraints. These 
constraints include non-negativity, bounds on the residual 
norm and a semi-norm based on the second derivative of 
the estimation.  The latter two constraints require 
parameter selection to bound the errors.  Besides the 
problem of parameter selection, POCS does not necessarily 
converge to an optimal solution, only one that satisfies all 
the constraints. This difficulty was addressed in [3] where 
the same constraints were cleverly reformulated into a 
bounded and constrained least squares problem. However, 
this method also requires parameter selection to bound the 
errors. In [5], a Wiener estimation technique was used, but 
this also requires parameter selection in the form of 
estimates of the noise statistics. Sequential quadratic 
programming was used in [6], with non-negativity 
constraints and a smoothness constraint achieved through 
limiting the calculated spectral response to be constructed 
from a limited number of low frequency basis functions. 
The expected modality of the spectral response must also 
be specified. A common theme with these methods is the 
need for parameters to constrain the optimization. 

Selection of these parameters is not always obvious and 
may require significant experimentation in order to 
determine them.  Furthermore, if a different sensor needs 
to be evaluated the characteristics are likely to change 
requiring further experimentation.  A single parameter, 
easily searched, estimation technique was mentioned in [1] 
as the Principle Eigenvector Method and in [2] as the rank-
deficient pseudo-inverse method. Both of these refer to the 
same method of computing the response using a truncated 
Singular Value Decomposition (SVD). The SVD of a m×n, 
n ≤m, matrix A is a factorization such that: 

A = U S VT      (4) 

where U is a m×m orthonormal matrix, V is a n×n 
orthonormal matrix and S is a m×n diagonal matrix 
consisting of the n singular values, σn, of A sorted from 
largest to smallest. The Moore-Penrose pseudo-inverse10 of 
A, A+ is defined as: 

A+ = V S+ UT      (5) 

where S+ is a diagonal n×m matrix consisting of the 
reciprocals of the singular values of A. The pseudo-inverse 
can be used to compute the least squares solution to (2): 

Cls = A+ B      (6) 

Since the singular values may span several orders of 
magnitude (and do, for the case of the MacBeth chart 
reflectances), the small singular values, when inverted, will 
greatly amplify any errors in B. The result is a solution 
dominated by these amplified errors. In order to avoid this 
problem, the SVD is truncated by using a reduced number, 
r < n, of the largest singular values in the computation of 
C. The truncated pseudo-inverse becomes: 

Ar

+ = Vr Sr

+ Ur

T     (7) 

where Vr is n×r, Ur is m×r and Sr

+ is r×r. Ar

+ is then used to 
compute a new solution: 

Cr = Ar

+ B      (8) 

As reported in [1] and [2], the results from (8) are better 
than those obtained from (6), but the method is not robust 
with respect to larger noise levels in B. 

Regularization  

Regularization is the process of replacing the original 
problem, for example (6), with a modified or regularized 
problem with a stable solution less sensitive to 
perturbations and close to the desired solution. The 
truncated SVD is an attempt to regularize the color sensor 
recovery problem. This is the preferred approach for 
numerically rank deficient problems, however this problem 
is, strictly speaking, ill-posed. The distinction is that 
numerically rank deficient problems have a well-
determined gap between the large and small singular 
values, which makes the choice of the truncation 
parameter, r, a straightforward matter. Ill-posed problems 
have gradually decaying singular values with no obvious 
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separation between large and small singular values.  
Discrete ill-posed problems arise from the discretization of 
Fredholm integral equations of the first kind of which (1) is 
a special case. Several numerical regularization methods 
exist for handling (1) and its discrete form (2) (see [7] for a 
survey of these methods). One such alternative to 
truncating the small singular values is to make use of filter 
factors.  Filtering rather than truncating the singular values 
addresses the noise amplification problem. So the 
regularized solution is computed as follows:  

Areg

+ = V F S+ UT     (9) 

and 

Creg = Areg

+ B        (10) 

where F is a diagonal n×n matrix consisting of the filter 
factors fn. The truncated SVD is a specific case of applying 
filter factors where for n≤ r, the filter factors, fn = 1 and for 
n>r, fn = 0. Tikhonov regularization is one method that 
makes use of filter factors. A compelling feature of 
Tikhonov regularization is that all filter factors are 
specified with a single parameter, λ: 

 
22

2

λσ

σ

+
=

n

n
nf      (11) 

Selection of λ is achieved through use of the L-curve 
criterion.9 The L-curve plots the norm of the regularized 
solution versus the norm of the residual on a log-log graph 
for various values of λ. In most cases, this plot results in a 
curve with a distinctive L shape. The optimal tradeoff 
between regularization and fit is achieved at the corner of 
the L-curve. Unfortunately, this approach does not result in 
acceptable results, particularly for noisy or highly 
quantized sensor data. The recovered responses have a 
noticeable high frequency component, not present in the 
actual sensor response. The reason for this is that the SVD 
does not provide an acceptable set of basis functions from 
which to reconstruct the response. An alternative, as 
mentioned in previous papers, is to minimize a semi-norm 
based on the second derivative of the solution rather than 
the solution norm itself. A formulation that achieves these 
goals involves the Generalized SVD (GSVD).7,11 The 
GSVD of a matrix pair (A, L) is a decomposition of the 
form: 

,1−







−

Σ
= X

pnI0

0
UA  1V(M,0)XL −=       (12) 

where L is a p×n matrix. For a discrete approximation of 
the second derivative, p=n-2 and L is a banded 
convolution matrix of the Laplacian filter response.1–21 
Consequently, U is an orthonormal m×n matrix, V is an 
orthonormal p×p matrix and X is a nonsingular n×n 
matrix. The matrices Σ and M are p×p diagonal matrices 
with elements σp and µp respectively. The elements of σp 

and µp are positive valued and sorted in increasing order. 

They are also normalized such that σp

2+ µp

2 = 1. The 
generalized singular values are γp = σp/µp. The GSVD 
provides a new basis, X, which allows a smooth solution to 
be computed using: 

Ai

+ = X Fi Σ + UT     (13) 

and 

ci = Ai

+ b
i      (14) 

where Σ+ is a p×p diagonal matrix with elements 1/σp. The 
matrix Fi contains the Tikhonov filter factors based on the 
parameter λ selected using the L-curve criterion for each of 
the i color filters. The filter factors for the GSVD 
regularized version are given by: 

 22
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Experimental Results  

A simulation of the color response recovery problem was 
implemented in MATLAB. Both RGB and CMY type 
filters were generated using a pseudo-random filter 
generator. Programmable levels of noise were added to the 
generated digital codes. This allowed the evaluation of the 
regularization methods over a large sample of different 
color filters under varying noise environments. Reflectance 
data from a MacBeth ColorChecker Chart under a D65 
illuminant measured every 2nm from 380 to 780 nm was 
reduced via quadrature to 20 spectral lines. The resulting 
24×20 array forms the matrix A. Simulated camera 
responses, B, are formed from the randomly generated 
filters. The Regularization Toolbox8 was used to compute 
the optimal regularized solutions, C, using the L-curve 
criterion. An example L-curve from the recovery of 
simulated sensor data quantized to 8 bits is shown in Figure 
1. The actual and recovered sensor responses for a typical 
8-bit sensor are presented in Figure 2. Clearly, the 
regularized solutions are very close to the actual solutions. 
Further experimentation resulted in some observations and 
uncovered some difficulties with Tikhonov regularization 
and the L-curve criterion as applied to the color sensor 
response recovery problem. As would be expected, 
different noise levels resulted in computation of different 
regularization parameters. However, for a given set of 
color filters but with varying noise levels, the regularized 
solutions were generally very close to each other. The 
method was also tolerant of offsets in the digital codes. 
However, it is clearly preferable to adjust for these offsets 
if at all possible as mentioned in [3]. As mentioned 
previously, using the solution norm in the L-curve did not 
generate acceptable results. The computed solutions were 
generally not as smooth as the actual filter response. 
Regularization using the second derivative semi-norm 
proved to be useful in generating smooth solutions. Since 
the regularization was applied independently to each of the 
three color channels, the computed Tikhonov parameter, λ, 
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was different for each color channel. This results in 
different regularization for each channel. This poses a 
difficulty since the relative amplitudes of the three 
responses are important, particularly for qualifying sensors 
on a production line. Also, occasionally, the regularization 
process arrives at a clearly incorrect solution. This occurs 
when the L-curve does not have its characteristic L shape. 
The determination of the corner becomes problematic and 
an inappropriate value for λ is chosen. In all of these cases 
an over-regularized or overly smooth solution is returned. 
It is known that, in general, the L-curve criterion will 
produce a slightly over-regularized solution with respect to 
the true optimum.9 To address this issue and the problem of 
determining the relative amplitudes of the three channels, a 
single value for λ is chosen to compute the final solutions. 
This consists of the minimum λ of those computed for each 
of the three channels. For most cases the three values of 
λ are very close, and the resulting solutions are not 
affected a great deal. 
 

 

Figure 1. The L-curve for 10 values of the Tikhonov 
regularization parameter λ. The corner of this curve represents 
the best tradeoff between the size of the residual norm and the 
size of the semi-norm of the solution. 

 
The relative amplitudes determined in this way are 

very close to the actual and an approximation of g from (3) 
can be determined from the peak value over all of the three 
responses. For those cases where up to two of the 
computed responses are incorrectly determined, the 
minimum λ returns an appropriate solution. In the rare case 
where all three responses are incorrect (determined by 
clearly over-smoothed solutions or L-curves without an 
obvious L shape), the only recourse is to choose a new A. 
This can be accomplished by repeating the experiment with 
a different illuminant or a target other than the MacBeth 
chart. This infrequent problem suggests that future research 

should investigate how A can be selected such that 
Tikhonov regularization is more robust across various 
possible sensor responses.  

 

  

Figure 2. Typical results of recovering the color filter response 
of a simulated 8-bit sensor using Tikhonov regularization. 

Conclusion 

Indirectly determining the color sensor response can be a 
difficult problem, particularly for CMOS sensors that can 
be noisier than CCD sensors. Previous methods addressing 
this problem require empirical selection of multiple 
parameters and are generally not robust to larger noise 
levels. Tikhonov regularization requires selection of a 
single parameter that can be chosen via the L-curve 
criterion. This method is tolerant of higher noise levels. 
Although Tikhonov regularization is highly effective it 
occasionally fails. Those instances are obvious when the L-
curve lacks an obvious L shape. For most of these 
occasions, choosing a single regularization parameter from 
the three computed for the different color channels is 
sufficient to achieve satisfactory results.  
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