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Abstract 

An accurate, physically based mathematical model for 
characterisation of inkjet printers would allow the 
minimum set of observations to be used to derive well-
conditioned workable printer characterisations with known 
error characteristics. 

This paper seeks to present such a method of directly 
computing the characterisation of an inkjet printer from a 
limited set of colorimeter measurements. The method 
(called the Double Neugebauer Model by the author) 
employs a variation of the Neugebauer ink-mixing model 
and uses least squares to fit the model to the measured 
data. The method has been verified for a limited range of 
inkjet printers and shown to have an accuracy to the order 
of RMS ∆E = 1 on those printers. The resulting 
characterisation can be inverted numerically and used to 
produce a printer characterisation profile when combined 
with gamut mapping techniques. 

Introduction 

Inkjet printer characterisation is presently done using a 
variety of techniques. Some of these techniques derive 
from theoretical considerations and others are heuristic. 

Single Ink Models 
Optical dot gain models employ the Yule-Neilsen 

equations to model optical dot gain as the dot size 
increases. This is not directly relevant to inkjet printers 
because inkjet printer dots are always the same size. Dot 
gain certainly affects the effective dot size but its effect is 
not straightforward because the dots overlap. Using the 
method outlined by Balasubramanian2 did not produce a 
reasonable result for the Canon BJC 7000 or HyperPhoto 
inkjet printers when tested by the author. 

I have seen suggestions that the colour of a single ink 
blend can be modelled with a polynomial, the coefficients 
of which are determined by least squares. This was tried 
and yielded inadequate results for various orders of 
polynomial. In particular, the function could not always be 
inverted due to a local minimum value occurring for 
certain inks (particularly black) close to the full ink colour. 

Splines have also been used to model ink blends. The 
author expects that they can yield useful results. However, 

there is no physical basis for their use in printer 
characterisation. 

Multi-Ink Models 
The standard Neugebauer ink-mixing model has been 

used to model inkjet printers but it yields inadequate 
accuracy. It must be incorporated with a model for 
modelling a single ink blend. For inkjet printers, single ink 
blends are often modelled using direct interpolation from 
observed values when using this technique. 

Variations on multi-variate polynomials4 have also 
been employed but the results are not ideal. 

Multi-variate B-Splines have also been used for 
modelling printer characterisations. Adequate results can 
be achieved this way3 but again there is no physical basis 
for the procedure. 

Heuristic methods can also be used. For example, 
starting from observations of ink blend samples and the 
Neugebauer ink-mixing model, it is possible to 
heuristically improve the model until it is of useful 
accuracy. 

Equipment 

The following equipment was used for the experiments 
described in this paper. 

Minolta CR-321 Chroma Meter 
This instrument claims an accuracy of ∆E = 1 in its 

instruction booklet. This was not particularly verified but 
the experimental results are consistent. Other work done 
with this instrument in our office is also consistent with 
this accuracy claim. 

Printers and Papers 
The Canon BJC7000 with a BCI-61 ink cartridge was 

used with a poor quality coated paper. The paper was 
rather too yellow and suffers from variation of colour over 
a sheet. The variation has been crudely measured and 
found to be in the order ∆E ≈ 2. (In retrospect, a better 
quality paper should have been used. However, at the time 
the experiments were started, the publication of these 
results was not anticipated.) 

The Canon HyperPhoto printer with standard 
HyperPhoto “paper” was also used for testing. No colour 
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variation within a single sheet could be detected using the 
Minolta CR-321 Chroma Meter. 

When paper colour variation and colorimeter accuracy 
are considered together, it is clear that it will not be 
possible to achieve an accuracy better than RMS ∆E of 2 ~ 
3 for the Canon BJC7000 using this paper and about ∆E ≈ 
1 for the Canon HyperPhoto printer. 

Computer Programs 
The author wrote all the programs used in these 

experiments using Microsoft Visual C++ 6.0.  

Single Ink Characterisation 

An inkjet printer places dots of approximately equal size 
on the page in a grid pattern. The location of dots is 
determined by the half-toning technique employed but, for 
most half-toning techniques, the intention is to place dots 
with some pseudo-random characteristics such that it does 
not produce any visual artefacts. 

If the colour resolution of a single channel is n bits, the 
range is 0 to 2n-1. This paper assumes that, for a value j, 
the half-toning algorithm will place j out of 2n-1 dots. 
Where this is not the case, compensation must be made for 
the actual number of dots placed. 

Blank paper 
covered by 
last dot 

Area of grid 
cell for one 
dot = D 

Area covered 
by first dot 
= d 

 

Fig 1   Representation of dots placed by an ideal inkjet printer 

 
Let d be the area of a single dot, n be the number of 

bits of colour resolution for an ink and D be the grid area 
of a single dot. D will be 1/(2n-1) of the area covered by 2n-
1 dots. On a reasonable inkjet printer, D must be less than 
d. 

In XYZ colour space, the colour of a patch printed on 
this printer can be represented as a linear combination of 
the colour of the paper and the colour of a dot. 

X = (1 - f(x)) PX + f(x) IX    (1) 

where X is the X component of the XYZ colour space, f(x) 
is the proportion of paper covered with ink (including any 
optical dot gain), Px is the X component of the paper colour 

and Ix is the X component of the colour of the ink dot on 
the paper. (Similar formulae apply to the Y and Z 
components of XYZ.) 

Let f(x) have the domain [0-1] so that its definition is 
independent of the colour resolution of the printer. It must 
also have the range [0-1] on a reasonable inkjet printer. 
Based on figure 1, there are some observations we can 
make about the function f(x). 
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Therefore its derivative at zero must be, 
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Also, for a printer with ideal dot size, 
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Similarly, its derivative at 1 must be, 
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Provided that the printer has a dot size which is close to the 
ideal, 

d - D
D

  

will be small and positive. Also, in general, 
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provided δ is small. Therefore, for an inkjet printer, the 
approximation 
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can be expected to hold. 
This observation lead the author to an attempt to 

model the colour of a single ink blend using a function 
derived from the simple reciprocal y = 1/x because it is the 
simplest function which meets this criterion. 
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Figure 2    Graph of section of 1/x curve which has been inverted 
and scaled to the range [0-1] 

 
Figure 2 shows a graph of a section of the 1/x curve. 

This symmetrical section has been inverted and scaled to 
have a range and domain of [0-1].  It can be represented by 
the function 

( )
kkx
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+−
=

)1(
      (2) 

which has all of the required properties. Figure 2 was 
computed for k = 0.2. 

If the assumption is correct, equations (1) and (2) 
together provide a complete model of a single ink blend on 
an inkjet printer. 

This model was fitted (by the use of iterative least 
squares, because the observation equations are not linear in 
k), to measurements of patches printed on an inkjet printer. 
The model was found to fit well for light coloured inks but 
did not have adequate accuracy for dark coloured inks. 

In order to extend the model to better fit the observed 
blends, the simplest extension was attempted first. That is, 
each dot was considered to consist of two sections: a major 
section, I, which is close to the average ink colour; and a 
minor section, H, of different colour. 

However, even this extension needed further 
simplification to make it computable. It was decided to 
assume that the placement of the major and minor sections 
was random and not related to one another. While this 
assumption is false at face value, there is some justification 
for it as the placement of the minor (or major) section of 
one dot is uncorrelated with the placement of the minor 
and major sections of all other dots. 

Based on this premise, the new estimator for the 
colour of a patch becomes 
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where f(x) represents the proportion of the paper covered 
with major sections, g(x) represents the proportion of the 
paper covered with minor sections, PX represents the X 
component of the paper colour (as before), IX represents the 
X component of the colour of the major section (which will 
be close to the overall ink colour), HX  represents the X 
component of the minor colour and HIX represents the X 
component of the colour of overprinted major and minor 
sections. 

This is somewhat like mixing two totally independent 
inks where one is the major section of the ink dot and the 
other is the minor section. The mixing is modelled using a 
bilinear interpolation between the “Neugebauer primaries” 
after the non-linearities of the ink responses have been 
removed using the f(x) and g(x) functions. 

For this composite dot model, the function f(x) is 
unchanged from the simple model. However, the same 
function cannot be used for g(x). The form of the function 
f(x) arises because the dots overlap. However, the minor 
sections are assumed to be sufficiently small that they do 
not significantly overlap. Therefore the g(x) function was 
selected to be a very simple linear function. 

( ) xkxg ′=  

The k' is different from the k of the f(x) function. 
It was also discovered that it is not be possible to solve 

for both of the HX and HIX values because they are not 
independent and nor are they independent from k'. 
Therefore, it is necessary to add two further constraints to 
the system. This can be done without loss of generality. 
The constraints 

XX

XX

HI

HII

=
=

     (3) 

were chosen because they make the subsequent formulae 
simpler. At first sight, this appears to negate the 
assumptions of the composite dot model entirely but, with 
careful consideration, it can be seen that it is still a valid 
result of the composite dot assumption. 

As a result of the new constraints, IX replaces HIX and 
HX in equation (3). If x = 1.0 is substituted in equation (4) 
below, it can be seen that the IX value still represents the 
colour of the ink. 

The new predictor for the colour becomes 

( )( ) ( )( )[ ]
( ) ( )( ) ( )[ ]xgxgxfI
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1

11
   (4) 

This is fortuitous because it suggests that we can introduce 
an assumption of non-uniform dot colour with addition of 
only a single new parameter, k'. This means that we do not 
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need to significantly add to the number of observations 
made to characterise a single ink blend. 

Table 1    RMS residuals of fit of composite dot model 
to Canon HyperPhoto single ink blends 

Channel 
number 

Colour RMS ∆E 

0 Cyan + 0.85 
1 Cyan – 0.10 
2 Magenta + 1.12 
3 Magenta – 0.21 
4 Yellow 0.52 
5 Black 1.08 

Table 2    RMS residuals of fit of composite dot model 
to Canon BJC 7000 single ink blends 

Channel 
number 

Colour RMS ∆E 

0 Cyan 1.17 
1 Magenta 1.93 
2 Yellow 1.27 
3 Black 1.38 
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Figure 3    Result of fit of composite dot model to Canon 
HyperPhoto black ink blend 

 
The same technique of iterative least squares was 

employed to fit this model to the observed data. The above 
results were obtained from simultaneously fitting all inks 
for a printer so that only a single value for paper colour 
was computed. While the fitting was done in CIE XYZ, the 
observations were weighted using the CIE L*a*b* colour 
space so that the use of an RMS ∆E metric was 
meaningful. The least squares computation was done 
independently for the X, Y and Z components and the ∆E 
values computed afterwards from the three sets of results. 

The results in tables 1 and 2 were computed from the 
measurement of 16 patches for each ink. They are as good 
as can be expected from the equipment used in this 
experiment, which indicates that the model is as good as 

can be developed using this equipment. In particular, the 
graph for the Canon HyperPhoto black ink presented in 
figure 4 is one of the worst case inks (given the lower error 
expectation for the HyperPhoto printer). The residuals are 
measured in ∆E and relate to the right hand axis of the 
graph. 

The author suspects that the Minolta CR-321 
colorimeter used for these measurements may have worse 
accuracy closer to black and that this may partly explain 
the larger residuals in the near black colours in Figure 3. 
However, this theory has not been tested. 

The residuals are within what is required to make a 
useful printer characterisation. 

Multi Ink Characterisation 

Multi-ink characterisation can be modelled by a logical 
extension of the single-ink composite dot method. 

The single-ink method assumes a mix of two “inks”, 
being the ink's major and minor sections. For more than 
one ink, a “double Neugebauer set” is used. This is defined 
similarly to the usual Neugebauer set as shown below. 

Let S be the set of all inks. Then the usual Neugebauer 
set is the set of colours of all combinations of the elements 
of set S. The double Neugebauer set is similarly defined 
but is based on a set S' which contains the inks’ minor and 
major sections. This basis set S' contains double the 
number of elements. Therefore, the number of elements in 
the double Neugebauer set is the square of the number in 
the usual Neugebauer set.  

The X component of the patch colour is then predicted 
by the formula 
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where ai is the proportion of dots of ink i, K is the set of 
double Neugebauer primaries, PX is the X component of the 
XYZ colour of the primary p, Maji ∈ p is true if the ith ink’s 
major section is included in the double Neugebauer 
primary p, Mini ∈ p is true if the ith ink’s minor section is 
included in the double Neugebauer primary p, 
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and the expression q ? a : b takes the value a if the logical 
predicate q is true, or b if q is false. 

The above formula applies independently to the X, Y 
and Z components of the XYZ colour space. 

This model was named the Double Neugebauer 
Model by the author. 

For n inks, the set of double Neugebauer primaries 
contains 22n members. This can be very large as table 3 
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indicates. Computation of every member of the double 
Neugebauer set would result in a prohibitive number of 
measurements and amount of computation. Fortunately, it 
is not necessary to compute all of these values.  

Just as it is not possible to know the values for HX and 
HIX in the single-ink composite dot model, when 
computing the parameters for the Double Neugebauer 
Model it is not possible to determine all the elements in the 
double Neugebauer set. For example, the X components of 
primaries H1I1I2 and I1I2 cannot both be determined. In 
addition, they are not independent from the k'Xi parameter. 
As we did in the single ink case, without loss of generality 
we can assume that these two colours are equal. We must 
also find some constraint on the k'Xi parameters so that we 
get a non-singular least squares matrix. 

The least squares observation equations for the multi-
ink problem are non-linear because the kXi terms are in the 
denominator. Attempting to use an iterative procedure for 
simultaneously computing, say, 128 values would result in 
inverting a matrix of size 128x128 many times. This would 
be uncomfortably slow. In addition, it would be reasonable 
to expect that the process would be unstable. 

These three issues can be addressed simultaneously by 
separating the computation into two phases. 
Phase I Using data for single inks only, solve 

simultaneously for PX and all the IXi, kXi and k'Xi. 
This is already known to be stable and results in 
good predictions for these values. It also fixes 
the k'Xi so that we can use them in the next phase 
of the solution. 

Phase II To make the least squares matrix for this phase 
non-singular, it was necessary to add further 
constraints. It is sufficient to constrain the 
colours of all primaries that involve both minor 
and major sections for a given ink to be the same 
as the primary that does not involve the minor 
section. This is similar to the additional 
constraints used in phase I. For Phase II, using 
observation data spread over the printer’s gamut, 
solve for the remaining elements of the set of 
double Neugebauer primaries. 

Phase II of the solution is not only independent from 
this first phase, but is linear and so can be solved directly, 
thereby reducing computation time and increasing the 
likelihood of a stable solution. Phases I and II must be 
repeated independently for each of X, Y and Z. 

For Phase II, we can further reduce the amount of 
computation by observing that the probabilities associated 
with some of the double Neugebauer primaries are so small 
that approximating these primaries with others that are 
similar in colour will have little affect on the final result. 
There were two components to the strategy used. Firstly, 
all primaries that involved two or more minor sections 
were replaced with the primary that used the same major 
sections but without any minor sections. Secondly, those 
primaries that would flood if printed do not need to be 
known accurately. They can be replaced by primaries of 

similar colour that do not flood without affecting the 
usefulness of the model. 

Using this technique means that, while we can 
compute a useful model, the k'Xi and many of the double 
Neugebauer set which result from the computation will 
have little physical meaning. In practice, it was not 
possible to assign any meaning to the numbers that 
resulted. This does not take away from the rigour or 
usefulness of the resulting model, but does indicate that the 
initial assumptions are neither proved nor disproved by the 
result. 

Employing the above scheme will result in the 
numbers in the final column of table 3. 

Table 3    Numbers of elements in sets of double 
Neugebauer primaries 

No. of 
inks 

Normal 
Neugebauer 

set 

Total 
Double 

Neugebauer 
set 

Double 
Neugebauer 
set elements 
needed for 

Phase II 
3 8 64 13 
4 16 256 34 
6 64 4096 125 

 
By way of example, in the 3 ink case above, the 13 

remaining members of the Double Neugebauer Set are 
{ICHM, ICHY, IMHC, IMHY, IYHC, IYHM, ICIM, ICIY, IMIY, ICIMHY, 
ICHMIY, HCIMIY, ICIMIY} 

To make best use of the resulting characterisation 
procedure, three distinct sample sets were used.  

Set A consisted of patches of single ink only and was 
used in Phase I only. It is necessary to determine the paper 
colour plus three parameters for each ink. If a redundancy 
of 100% is required to ensure reliable determination, it is 
necessary to print at least six patches for each ink. They 
should be roughly visually spread between paper and full 
ink. Paper colour must also be measured. 

For most printers, there is no real necessity to 
accurately model the whole domain because it is not used 
in production images. Set B consists of patches spread over 
the part of the multi-ink domain which does not flood. This 
set is used to provide information to keep the overall model 
stable. When used in the least squares process the 
observations from Set B are weighted with a very low 
weight. A weight of 0.1 was used for the these 
experiments. 

Set B should not contain any patches printed with one 
ink as these do not contribute to the second part of the 
characterisation. Similarly, it should not contain the paper 
colour. 

Set B should contain all multiple ink Neugebauer 
primaries which do not flood. For a six-ink printer there are 
64 primaries. Depending on the printer, about a third of 
these will flood and seven are not relevant because they 
consist of one ink or no ink at all. The remaining set will 
contain about 35 primary patches. 
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For printers with four inks, a more stable 
characterisation was achieved when Set B was augmented 
with some mid range samples. 

For a three-ink printer, Set B is not required because it 
will not be different from Set C below. 

This choice of the samples in Set B and the choice of 
the rules used to reduce the double Neugebauer set are 
intimately related. A bad combination can result in an 
unstable characterisation. While a good combination has be 
found, the nature of this relationship has not been fully 
investigated. It may be possible to find a better 
combination that allows the use of a smaller Set B. 

The region of the model domain in which we are most 
interested is that which results from the black channel 
generation (BG), under colour removal (UCR) and ink split 
methods that will be used in the final printer 
characterisation. Set C is chosen to consist of colours that 
are visually evenly spaced throughout this region. It should 
contain at least double the number of samples as the 
number of elements from the double Neugebauer set that 
are required to be determined. It should not contain any 
patches printed with just one ink as they will not contribute 
to the second part of the model. Likewise paper colour is 
not relevant. 

Experimental Results 

Various choices of sample set and elimination strategy 
worked but the results varied in accuracy and usability. In 
general, for a good quality printer such as the Canon 
HyperPhoto printer, it is easy to achieve an RMS ∆E = 
0.64 for sample Set C using the strategy outlined above. As 
the sample set is about twice the size of the number of set 
elements that need to be determined, a reasonable error 
estimator is around √2 times this. That is, a reasonable 
estimator of error for this procedure is RMS ∆E ≈ 0.9. This 
is consistent with predictions of experimental error and 
indicates that it is not possible to achieve a better result 
with this equipment. 

The Canon BJC-7000 printer was tested with CMYK 
inks and similar results were obtained with an error 
estimator of RMS ∆E ≈ 2.0 Again, this is within expected 
experimental error. 

For the BJC7000 with four inks, the resulting 
characterisation was inverted to produce printer 
characterisation LUTs. These LUTs were then used to print 
various test images with excellent results. 

Conclusions 

The physical assumptions of the mathematical models 
proposed in this paper are neither proved nor disproved by 
the results. However, the models have been demonstrated 
to be sufficiently accurate to be useful in practice on the 
printers that were tested. The computation on a modern PC 
takes only seconds and the results can be numerically 
inverted to produce LUTs for inclusion in printer 
characterisation profiles. 

Further tests are required on other printers. There 
might also be gains from further experimentation with the 
choice of sample sets and the strategy for reduction of the 
set of double Neugebauer primaries. Also, no 
experimentation has been done on the simultaneous 
characterisation of multiple UCR/BG strategies but the 
author expects that this will work by the inclusion of 
multiple sample sets of the Set C type. 

The strategy, as described, works only for inkjet 
printers with a single dot size. Expansion of the model to 
multiple dot sizes would also be useful. 
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