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Abstract  

A spatial gamut mapping technique is proposed to 
overcome the shortcomings encountered with standard 
pointwise gamut mapping algorithms by preserving 
spatially local luminance variations in the original image. 
It does so by first processing the image through a standard 
pointwise gamut mapping algorithm. The difference 
between the original image luminance Y and gamut 
mapped image luminance Y’ is calculated. A spatial filter 
is then applied to this difference signal, and added back to 
the gamut mapped signal Y’. The filtering operation can 
result in colors near the gamut boundary being placed 
outside the gamut, hence a second gamut mapping step is 
required to move these pixels back into the gamut. Finally, 
the in-gamut pixels are processed through a color 
correction function for the output device, and rendered to 
that device. Psychophysical experiments validate the 
superior performance of the proposed algorithm, which 
reduces many of the artifacts arising from standard 
pointwise techniques. 

Introduction 

Gamut mapping is an important problem in color 
management, and has been one of the most active areas of 
research in the Color Imaging Conference series. The 
optimal gamut mapping strategy for a given application 
depends on input and output gamuts, image content, user 
intent and preference. The design of the optimal technique 
thus involves a suitable trade-off among image attributes 
such as contrast, luminance detail, vividness, and 
smoothness. A plethora of gamut mapping algorithms has 
been proposed in the literature, optimized for different 
applications, and with different trade-offs. Excellent 
overviews and references to work in this area can be found 
in [1] and [2]. 

One might classify gamut mapping algorithms into 
three basic categories. The first category comprises device 
dependent algorithms, where-in the gamut mapping is a 
function of the input (usually CRT) and output (usually 
printer) gamuts. These algorithms are independent of input 
image content. The majority of well known gamut 
mapping algorithms fall in this category.1,3-5 

The second category consists of image dependent 
algorithms, where-in the gamut mapping is a function of 

the input image statistics, and the output device gamut. 
These algorithms are generally expected to perform better 
since they adapt to image content.2,6,7  
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Figure 1. Mapping of black text and blue background from CRT 
gamut (dashed line) to print gamut (solid). 

 
In both these categories, the gamut mapping is a 

pointwise operation from an input point to an output point 
in an appropriate (usually perceptual) 3D color space. One 
of the fundamental problems with such pointwise 
operations is that they do not take important spatial 
neighborhood effects into account. For example, consider 
an image composed on the CRT, with black text against a 
blue background. The text is easily distinguished against 
the background. However, when this is mapped to a 
printer’s gamut with an algorithm that maps out-of-gamut 
colors to the nearest surface color, the CRT blue maps to a 
much darker blue in the printer’s gamut. On the other hand, 
the CRT black maps to a lighter printer black. This is 
illustrated in Fig 1, where the dotted and solid gamuts 
represent the CRT and printer respectively, and the nearest 
point mapping is labeled GM1. As a result of this gamut 
mapping, much of the luminance distinction is lost 
between text and background, and the legibility of the text 
is diminished. A comparison of luminance profiles of the 
input and resulting printed images is shown in Fig. 2. Note 
that such a gamut mapping function is considered optimal 
when rendering large areas of black or blue in isolation. 
The problem arises when they are juxtaposed. One can 
alleviate this problem by adopting a different pointwise 
gamut mapping algorithm that preserves luminance 
(labeled GM2 in Fig 1). Now the visibility of the text will 
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greatly improve, but luminance preservation usually comes 
at the cost of significant loss in chroma, and this will likely 
be unacceptable in a different image. Hence, all pointwise 
algorithms are heavily constrained by such trade-offs, 
making it difficult to develop a common algorithm that 
achieves high quality for a large variety of images and 
gamuts. 
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Figure 2. spatial luminance profile of the gamut mapping shown 
in Fig 1. 

 
The third category of gamut mapping algorithms, 

which is the focus of this paper, consists of algorithms that 
take into account spatial characteristics in addition to color 
characteristics of the image. We believe not many 
algorithms exist in this class. With such algorithms, two 
pixels of the same color in an image can map to different 
colors in the output image, depending on the spatial 
characteristics in the neighborhood of the pixels. A few 
researchers have proposed techniques in this category. 
Meyer and Barth8 used homomorphic filtering to separate 
low and high spatial frequency channels, and then to apply 
global dynamic range compression only to the low 
frequency channel. A potential problem with such 
approaches that separate spatial from color transformations 
is that they are susceptible to noise amplification. Kasson 
[9] proposed a blending of two gamut mapping algorithms, 
one preserving luminance and one preserving chrominance. 
The blending is a function of distance from gamut, and 
spatial frequency, with luminance being preserved at high 
frequencies, and chrominance preserved at low 
frequencies. McCann10 used the principles of Retinex 
theory to develop an iterative gamut mapping which 
attempts to preserve ratios of colors at adjacent pixels. 

 
Gamut Mapping with Spatial Feedback 

In this paper, we describe a spatially dependent gamut 
mapping algorithm based on the principle that it is more 
important to preserve luminance at high spatial 
frequencies, while it is generally desirable to preserve 
chrominance at low spatial frequencies. Unlike some of the 
existing approaches mentioned above, in which spatial 
processing and pointwise gamut mapping occur in separate 
steps, our proposed method tightly couples the spatial and 
color transformations in a corrective feedback mechanism, 
resulting in a robust framework for gamut mapping. 

In the following discussion, the term “luminance” is 
used generically to encompass the strict definitions of 
luminance (i.e. the Y component in XYZ) and lightness 
(i.e. the L* component in CIELAB). The chrominance 
components C1 and C2 are likewise a generic representation 
of opponent color signals. Gamut mapping operations take 
place in such a device independent luminance-chrominance 
space.  

A block diagram of the proposed algorithm is shown in 
Fig 3. Let us define G1 as a pointwise gamut clipping 
algorithm that emphasizes preservation of chroma over 
luminance. Let G2 be another pointwise gamut clipping 
algorithm that emphasizes preservation of luminance over 
chroma. First G1 is applied to the input colors, and an error 
image ∆Y is computed between the luminances of the 
input and gamut mapped signals. A high-pass filter F is 
applied to the error image, resulting in image ∆Y’. This 
image, which comprises only the high frequency errors 
introduced by gamut mapping, is then added back to the 
gamut mapped signal Y’. Note that this feedback step may 
move the pixel color (Y’’ C1’ C2’) back out of the gamut, 
and hence, a second gamut mapping operation G2 is 
applied to limit all colors to the gamut. Note that the 
algorithm preserves the characteristics of G1 at low spatial 
frequencies, while using G2 to preserve high frequency 
luminance variations in the original image that G1 may 
have lost or altered. Hence the strengths of both algorithms 
are exploited in the appropriate spatial frequency bands, 
and the trade-offs that one must face with pointwise 
algorithms are now significantly mitigated. All the 
operations up to this point constitute the overall spatial 
gamut mapping algorithm, performed in a device 
independent luminance-chrominance space. The final step 
is to convert device independent color to device dependent 
color (i.e. CMYK) via a printer color correction transform. 
To reduce the overall computational complexity of the 
algorithm, G1 can be implemented in a 3-D lookup table, 
and G2 can be concatenated with the printer color 
correction transform from CIE color to CMYK. 

The design of G1 and G2, and the spatial filter F can 
depend on many factors, including global and local image 
characteristics, device characteristics, rendering intent and 
preference. We will describe a simple initial 
implementation in this paper, recognizing that more 
research will be needed to further optimize the algorithm 
parameters. For this paper, the gamut mapping G1 was 
chosen to map out-of-gamut colors to the nearest surface 
point of the same hue. This mapping generally favors 
preservation of chroma over luminance. For G2, the cusp 
algorithm was chosen, where out-of-gamut colors are 
mapped to the surface in a direction towards a neutral point 
whose luminance is that of the cusp color.1 (The cusp is 
defined as the point of maximum chroma in a given hue 
slice.) This algorithm tends to emphasize luminance over 
chroma preservation, especially for points close to the 
gamut surface. Both G1 and G2 leave in-gamut colors 
unaltered.  
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Figure 3. block diagram of proposed spatial gamut mapping algorithm 
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Figure 4. spatial luminance profile of black text and blue background of Figures 1 and 2 at the various stages in the proposed 
algorithm 
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 Figure 5. Flow diagram of adaptive filter size selection algorithm 

 

 

While the chosen G1 yields high-chroma 
reproductions, it is susceptible to the “lightning rod effect”, 
where-in several image colors map to one point, especially 
near black and at the gamut cusp. In the proposed 
technique, if these image colors are from a high spatial 
frequency region, the filtered feedback will re-distribute 
their luminance values, and G2 will retain luminance 
distinction, thus eliminating the problem. 

Figure 4 demonstrates what happens at various points 
in the algorithm for the example of blue text on black 
background (Fig. 1, 2). Adding the filtered error ∆Y’ to the 
gamut mapped luminance Y’ yields the signal Y’’, which 
retains the characteristics of the original input image Y 
near the edge while retaining the characteristics of the 
gamut mapped image Y’ in smooth regions (see Fig 2). 
This signal, in combination with the chrominance signals 

C1’ and C2’ must be remapped to the gamut surface with 
the transform G2, to yield a luminance profile Y’’’, which 
may be somewhat different from Y’’. In this example, Y’’ 
contains luminances that are below the minimum 
luminance achievable by the printer, hence these values get 
clipped. However, even with this limitation, the algorithm 
restores the edge information that was diminished in the 
pointwise algorithm (shown as a dashed line in Fig 4). The 
extent and spatial footprint of the enhancement is 
dependent directly on the characteristics of the high-pass 
filter F. In this paper, we have chosen a simple linear filter 
whose operation at pixel i is given by: 

∑
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∆−∆=∆
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where S is an NxN neighborhood around pixel i. With 
these characteristics the overall gamut mapping, with 
spatially filtered feedback, will approximately reproduce 
the variations in Y at high spatial frequencies, while 
reducing to the pointwise mapping G1 at low spatial 
frequencies. As might be expected, the optimal filter size N 
depends on the type of image. For images with soft or 
noisy edges, e.g. in scanned pictorials, a large filter size 
was required for noticeable improvement. On the other 
hand, for images that have strong edges and low noise, e.g. 
computer generated business graphics, a large filter size 
gave rise to distinct halo effects around edges; hence a 
smaller filter size had to be used. From experimentation on 
a Xerox DocuColor12 xerographic CMYK printer with 600 
dpi resolution, a filter size of N=15 was adopted for 
scanned pictorials, and N=3 was used for computer 
generated graphics. Clearly, the optimal N is resolution 
dependent. 

Adaptive Filtering Algorithm 
If the image type is known a priori, the algorithm can 

use this to switch between the small and large filter sizes. 
Since this information is not always known, a simple 
method was developed to adaptively determine filter size 
based on local spatial characteristics of the difference 
image ∆Y. The adaptive algorithm was based on the 
observation that for graphics images, the local variance, or 
activity in the ∆Y image tends to be either very small (i.e. 
flat areas) or very large (i.e. edges); while the local activity 
in scanned images tends to mostly take on intermediate 
values. To minimize the computational overhead, the 
absolute value of the high pass filter output, |∆Y’| was 
itself used as an approximate measure of local image 
activity. Figure 5 is a flow diagram of the proposed 
scheme. First, the activity measure aS is computed at the 
small filter size (N=5), and checked to see if it lies within a 
certain range [t1, t2]. Activity measures outside this range 
are either very small or large, hence a small filter size is 
used, suitable for graphics images. If aS lies within the 
given range, this suggests the characteristics of a scanned 
pictorial. However, an intermediate activity value can also 
indicate that the pixel is near, but not on a strong edge in a 
synthetic graphics image. To differentiate this signature 
from a noisy scan, a second decision step is used. The 

activity aL is derived for a large filter size (N=15), and the 
ratio of the two activities aL/aS is calculated. This ratio will 
take on large values (>>1) if the pixel is near a strong edge 
(i.e. graphics), and will approach 1 if the image variance 
characteristics are invariant across the two filter sizes (i.e. 
a noisy scan). Comparing this ratio against a threshold t3 
provides the final decision on filter size. The various 
thresholds were obtained by trial and error to minimize the 
rate of misclassification. 

Experimental Results 

Psychophysical Evaluation of Spatial Gamut Mapping 
A visual experiment was conducted to compare 

standard pointwise gamut mapping techniques with the 
proposed spatial mapping method for scanned pictorial 
imagery. The standard techniques were i) clipping to the 
nearest point on the gamut surface while preserving hue; 
and ii) nonlinear L* compression using the inverse-
gamma-inverse (IGI) technique4 followed by cusp clipping. 
These algorithms have been reported as successful 
pointwise techniques in previous experiments.4 Two 
versions of the spatial gamut mapping method were tested: 
one without and one with IGI L* compression. The latter 
was applied as the very first step, i.e. before the filtered 
feedback in Fig 3. The operations G1, G2, and F were 
implemented as described in the previous section. CIELAB 
was used as the luminance-chrominance space. Since the 
images were known to be pictorials, the filter size was 
fixed to be N=15. We adopt the following symbols for the 
four algorithms: NP, IGI_CUSP, SGM, IGI_SGM. 

Eighteen observers participated in two pairwise-
comparison experiments: i) preference, where the observer 
was asked to select the most preferred image from a pair; 
and ii) reproduction, where the observer was asked to 
select the best reproduction from a pair with respect to an 
original reference image. Both original and gamut-mapped 
images were printed on a Xerox DocuColor12 printer. The 
gamut-mapped images were restricted to a smaller gamut 
of an inkjet printer. Five images were used, whose 
grayscale versions are shown in Fig 6. All images were 
viewed in a light booth with D50 illuminant. The printer 
was also calibrated for matching under D50. 

 

 

 

Figure 6 Grayscale versions of images used in psychophysical experiment 
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Figure 7 Preference scales from visual experiment for (a) preference and (b) reproduction experiment. The algorithms are: 1. NP. 2. 
IGI_CUSP 3. SGM 4. IGI_SGM 

Table 1 Standard deviation of preference scale values computed from 10 subsets of the psychophysical data 

Algorithm 1 2 3 4 

Preference 0.24 0.34 0.30 0.24 

Reproduction 0.46 0.41 0.29 0.35 

 
 
A standard Thurstone (Case V) analysis11 was carried 

out on the pairwise-comparison data, and preference scales 
were generated for the two experiments. The scales are 
shown in Figure 7. The error bars were computed 
according to [12].  

To gain insight on the variance in algorithm 
performance as a function of image content and observers, 
the following additional analysis was done. The observers 
were divided into expert and non-expert categories 
depending on their experience in color imaging. The 
collected experimental data was then divided into 10 
subsets: 5 images x 2 observer categories. 10 preference 
scales were generated, one for each subset, and the mean 
and standard deviation of the 10 preference scores for each 
algorithm was computed. As expected, the mean scores 
closely tracked the scores shown in Fig 7 for the overall 
experiments. The standard deviations of the scores are 
shown in Table 1. Note that these values should be 
interpreted relative to each other, and not be directly 
related to the graphs in Fig. 7. 

From Fig. 7, it is seen that IGI_SGM performed best in 
the preference experiment, and SGM performed best in the 
reproduction experiment. Generally, the spatial algorithms 
performed better than their pointwise counterparts, because 
they effectively retained detail and edge information in 
shadows and high-chroma regions that is often lost with 
standard techniques. L* compression resulted in improved 
performance in the preference experiments, presumably 
due to an increase in perceived overall lightness, 
colorfulness, and contrast of the images. However, this was 
not the case in the reproduction experiment, presumably 

because the color changes just mentioned would result in a 
less accurate match to the original image. Finally, from 
Table 1, we see that the spatial mapping algorithms that 
performed best also exhibited the smallest variance as a 
function of images and observers. This increases our 
confidence in these algorithms. 

 
Adaptive Filtering Algorithm 

To test the efficacy of the adaptive filtering algorithm, 
we processed the image shown in Fig 8(a), containing both 
pictorial and graphics content, and examined the filter size 
selected by the algorithm at each pixel. The two filter sizes 
were 15x15 and 3x3. Thresholds chosen by trial-and-error 
were t1=0.1, t2=15, t3=25. Fig 8b is a filter classification 
map, where-in black and white denote selection of large 
and small filters, respectively. The areas of the pictorial 
which benefit most from a large filter, namely the textured 
sweater and detail in the hair, are indeed classified in the 
“large filter” region. Note that portions of the girl’s face 
are actually treated with a small filter. This is because 
these regions are actually within gamut, and the error 
image ∆Y is flat (i.e. ∆Y=∆Y’= 0). In this case, no filtering 
is needed; however for convenience, these pixels are 
grouped with the “small filter” category. Most of the 
graphics image is correctly treated with the small filter, 
except for certain edge regions. However, these misclassi-
fied regions are no larger than the support of the small 
filter (i.e. 3x3). Hence artifacts arising from erroneously 
using a large filter are highly localized, and generally not 
objectionable. 
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       (a)          (b) 

Figure 8(a) grayscale version of composite image containing pictorial and graphics content; (b) filter size classification map from 
adaptive filtering algorithm, wherein black and white correspond to large and small filter sizes respectively. 

 

Summary 

We have presented a unique gamut mapping algorithm that 
takes into account spatial characteristics of the image. This 
feature eliminates some of the compromises necessitated 
by standard pointwise algorithms. By closely coupling the 
spatial and color transformations in a corrective feedback 
mechanism, our approach does not suffer from the noise 
amplification problems that can arise when the two 
transformations are applied separably. Psychophysical 
experiments show that the new approach outperforms 
standard pointwise gamut mapping methods for pictorial 
images. We believe that with some extensions, the 
algorithm will be equally effective for business graphics 
images. The proposed adaptive filtering scheme is a 
promising step towards a more robust framework for 
spatial gamut mapping. Finally, while our method is likely 
to achieve results that are qualitatively similar to that 
obtained by Kasson and McCann, we believe our algorithm 
requires a simpler implementation and fewer computations 
than either of these approaches.  
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