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Abstract 
A new spectral representation called the composite model is 
proposed. Its key point is to decompose all spectra into a 
smooth background and a collection of spikes. The smooth 
part can be represented by Fourier coefficients and a spike 
by its location and height. In this paper, the sufficiency of a 
low-dimensional representation is shown analytically based 
on the characteristics of human perception. A re-sampling 
technique is also proposed to improve performance. The 
composite model demonstrates advantages in all identified 
representation criteria including accuracy, compactness, 
computational efficiency, portability and flexibility. Its 
applications in areas of realistic image synthesis, image 
understanding, storage and communication of spectral 
images, and deriving natural spectra are discussed. 

Keywords: Spectra, representation, color, applications. 
 

Introduction 
Spectral functions, including spectral power distributions 
(SPDs), reflectances and transmittances, are an essential 
concept in image synthesis, image understanding, and color 
science. Natural spectra may have arbitrary shapes; some 
are smooth and others are spiky, as shown in Figure 1. 
Mathematically they require an infinite number of 
parameters to describe exactly. In practice, however, 
describing every spectrum with a large number of 
parameters is not feasible, because a real view usually 
involves hundreds or even thousands of spectral functions. 
Therefore, it is highly desirable that all spectra be 
represented through a small number of parameters while 
maintaining sufficient accuracy.  
 

 Figure 1: The SPDs of some real light sources. 
 

Overall, the following criteria should be considered for 
spectral representations: 
1. Accuracy: Since a practical spectral representation 

always involves some approximation, it is essential to 
provide an appropriate measurement of accuracy to 
ensure that errors are reasonably bounded. 

2. Compactness: While maintaining a sufficient accuracy, 
spectra should be represented with as few parameters as 
possible, because the compactness is useful in saving 
the required space for storing spectral data. 

3. Performance: Fast computations are always desired. In 
many cases, the overall performance efficiency is 
largely determined by the efficiency of multiplying two 
spectra, as shown in Eq. (1), because this computation 
is associated with each reflection and transmission.  

4. Portability: A representation should be uniform in 
format across applications. Although transforming one 
representation to another can be trivial in some 
applications [2], in general the work can be very 
laborious. Considering a situation in image synthesis 
when one uses many graphical models (such as a 
copper vase, plants, etc.) created using different spectral 
formats, unifying the graphical models can be a 
significant bottleneck.  

5. Flexibility: A representation should be flexible in the 
sense that one can easily adjust it to meet specific 
application requirements. For example, accuracy is a 
priority in realistic image synthesis while performance 
efficiency is more important in real-time applications.  
 
In previous representations [16], sampling is most 

commonly used. This method can obtain very high accuracy 
if a large number of sample points are used, and achieve 
linear performance for spectral multiplications 
 ,,...,1),()()( 213 NiSSS iii == λλλ  (1) 

where Nλλ ,...,1  are N sampled wavelengths. Sampling is 
also portable because its data are straightforward, and 
flexible because tradeoffs between accuracy and speed can 
be easily made by choosing different N. Its disadvantage is 
poor compactness; in particular, many sample points are 
needed to represent fluorescent SPDs because such spectra 
contain very narrow peaks, of widths under 1 nm typically. 
Another popular representation method is the linear model, 
which expresses a spectrum as a linear combination of a set 
of basis functions. Usually the basis functions are derived 
numerically so that they can best represent all spectra within 
a specified domain [6, 12, 14]. The linear model is fairly 
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accurate, compact and flexible. However, its spectral 

multiplication is )(O 2M , where M is the number of basis 
functions, which is relatively computationally expensive. 
Besides, the linear model is not very portable because 
exporting a spectrum requires not only the coefficients, but 
also the basis functions (otherwise the coefficients are 
meaningless). Spectra can also be represented with 
polynomials [7, 15] and the polynomial degree determines 
the compactness. Its problem is that it cannot accurately 
represent spectra with abrupt peaks such as in fluorescent 
SPDs. It is also not very efficient because spectral 

multiplication is )(O 2M , where M is the polynomial 
degree. Although portable, it is not flexible: if we change 
the polynomial degree, all the coefficients have to be 
recomputed to find the best fit. These previous methods are 
summarized in Table 1.  
 
Table 1: Comparing different spectral representations. 
The “Yes” and “No” roughly indicate whether or not 
they meet the corresponding criterion.  

  Sampling Linear 
model 

Polynomial Composite 
model 

Accuracy Yes Yes No Yes 

Compactness No Yes Yes Yes 

Efficiency Yes No No Yes 

Portability Yes No Yes Yes 

Flexibility Yes Yes No Yes 
 

This paper proposes a new spectral representation 
method called the composite model [18]. Its key point is to 
decompose any spectrum into a smooth background and a 
collection of spikes. The smooth part can be represented by 
Fourier coefficients and a spike by its location and height. 
Based upon the characteristics of human perception, we will 
show that it is possible to represent spectra with a small 
number of parameters. To improve performance, we 
propose re-sampling the smooth part that is reconstructed 
from Fourier coefficients, and as a result the computational 
complexity is greatly reduced. The composite model 
improves upon the existing methods with aspect to the 
identified criteria. It has promise in a number of application 
areas including image synthesis, image understanding, 
storage and communication of spectral images, and deriving 
natural spectra. 
 

Composite Model 
Basic Idea  
In the composite model, any spectrum is decomposed into a 
smooth background and a collection of spikes 
 ),()()( spikessmooth λλλ SSS +=  (2) 

where 
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1
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where ml  and mw  denote the location and weight (or 
height) of a spike, and the smooth part can be expressed by 
a Fourier transform over the visible range ],[ maxmin λλ  
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where minmax λλ −=L  and 
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for ∞= ,...,2,1,0n . Note that a smooth spectrum is 
dominated by low-frequency components. If we ignore all 
the coefficients with indices above N, the spectrum can be 
represented approximately with the lowest 2N+1 Fourier 
coefficients Naa ,...,0  and Nbb ,...,1 . (Note that 00 =b .) 
 
Sufficiency of a Low-Dimensional Representation 
Given any smooth function )(smooth λS , its corresponding 
color in CIE XYZ space is given by 

 3,2,1,)()(
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smooth == ∫ kdxSX kk

λ

λ

λλλκ  (6) 

where )(λkx  are the CIE XYZ color matching functions 

and κ is a constant. (We drop κ below as this does not affect 
the relative accuracy.) Substituting Fourier transformations 
for both )(smooth λS  and )(λkx into Eq. (6), we have 
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where na  and nb  are the Fourier coefficients of )(smooth λS , 

and kna ,  and knb ,  are those of )(λkx . Eq. (7) has an 

important implication: if the high-frequency coefficients of 
either )(smooth λS  or )(λkx  are negligibly small, we can 

represent )(smooth λS  through its low-frequency Fourier 

coefficients while maintaining good accuracy.  
To show this is the case, let us describe )(λkx  with  

 ,)(
22

c /))(2(ln4 wheg λλλ −−=  (8) 

where parameters h, cλ , and w correspond to the height, 
center, and width (at half height) of a Gaussian function, 
respectively, such that )(λkx  are approximated as 
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Good fitting parameter values are displayed in Table 2, and 
Figure 2 shows a good correspondence between the original 
and fitted curves. 
 
Table 2: Fitting Parameters for the CIE color matching 
functions. 

Small peak of  )(1 λx  λc,1a = 445 nm w1a = 45 nm h1a = 0.38 

Large peak of )(1 λx  λ
c,1b = 595 nm w1b = 80 nm h1b = 1.06 

 )(2 λx  λ
c,2 = 560 nm w2 = 100 nm h2 = 1.0 

 )(3 λx  λ
c,3 = 451 nm w3 = 55 nm h3 = 1.8 

 
 

Figure 2: The red, green and blue curves are the original CIE 
color matching functions, and the black curves are fitted 
results.  
 

Thus the Fourier coefficients of the CIE color matching 
functions can be calculated analytically (see Appendix): 
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for 3,2=k , and similar results hold for 1=k . These results 
show that the Fourier coefficients vanish rapidly, in the 

speed of )exp( 2cn− , where c is independent of n. 
For a smooth spectrum, it is safe to assume that 

 .
1

,
1

n
b

n
a nn ∝∝  (11) 

For most natural smooth spectra na  and nb  vanish much 

faster than n/1 , and only for a few types of spectra, such as 
a step function or a linear function with a non-zero slope, 

na  and nb  vanish exactly in the speed of n/1 . 

Based on Eqs. (10) and (11), the ratio of a term in the 
summation in Eq. (7) to the first is 

 3,2,
4||4 2222 )2(ln4/
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and similar inequalities hold for other terms. With L = 300 
nm and kw  given in Table 2, to make the ratio below 0.05, 

we just need 4>n . In other words, if we keep the first 
2×5+1 = 11 Fourier coefficients, the first ignored term only 
causes a relative error less than 0.05, and the following 
terms vanish rapidly (which tend to cancel each other 
because they are related to high-frequency oscillations). 
Note that a similar conclusion has been drawn in previous 
statistical studies [4, 12, 13], but ours is based on an 
analytical approach. Also, from Eq. (12), we can see that the 
sufficiency of a low-dimensional representation is mainly 
due to the exponential term, that is, the rapid decay of the 
Fourier coefficients of the CIE color matching functions. 
This agrees to the finding of the low pass nature of the 
human vision system [1]. 
 
Improving Performance by Re-sampling 
When multiplying spectra, the Fourier coefficients of the 
product can be directly calculated from those of the factor 
functions (based on that multiplication of signals is 
equivalent to convolution of their Fourier transforms), but 

the computation is not efficient because it is )( 2NO , where 

N is the coefficient number. Moreover, consider multiplying 
a spiky and a smooth spectrum. Assuming that 
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is spiky with )(1 λS  as its smooth background and that 

)(2 λS  is smooth, then 
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This means that we need to know )(2 mlS , the value of 

)(2 λS  at spike location ml . However, computing )(2 mlS  

using the Fourier coefficients of )(2 λS  involves evaluating 
a number of sine and cosine functions, which will 
significantly slow down the computation. 

To improve the performance, we propose to re-sample 
smooth spectra that are reconstructed with Fourier 
coefficients. Suppose )(λS  is reconstructed with 2N+1 

coefficients Naa ,...,0  and Nbb ,...,1 . Then the highest 

frequency involved is LN / . According to the Shannon 
sampling theorem, the re-sampling interval in the visible 
range should be less than )12/( +NL  to avoid information 
loss. To meet this requirement, we simply need to take 
2N+2 sample points 
 22,...,2,1),()( min +=+∆= NiiSS i λλλ  (15) 
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where )12/( +=∆ NLλ . Thus, a product between two 
smooth spectra can be obtained through 
 22,...,1),()()( 213 +== NiSSS iii λλλ  (16) 
which only involves 2N+2 multiplications. When 
multiplying a spiky and a smooth spectrum, the functional 
value )(2 mlS  that appears in Eq. (14) can be determined by 
a linear interpolation  
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where ml  is located within the sampling interval ],[ 1+ii λλ . 
Overall, we have achieved the linear performance.   
 
Implementation 
It is straightforward to implement the re-sampled smooth 
spectra with arrays and spikes with linked lists. Given any 
spectrum, it is easy to separate spikes from the smooth part, 
for example, by use of the gradient information [5]. 
Sometimes, as measured results, the data for the smooth and 
spiky parts are already stored separately, such as the 
fluorescent SPDs [22]. The separtion can be done before 
any application, i.e. off-line. Finally, if spikes are generated 
during an application, such as in rendering light dispersion 
or diffraction, we know that they occur at the object surfaces 
that cause such optical phenomena and thus add the 
corresponding spikes to the spike list for the outgoing SPDs.  

Tables 3 and 4 display the representing data for the 
SPDs of Source C, a mercury arc lamp, and a sodium lamp.  
 
Table 3: Fourier coefficients of the smooth part of real 
spectra. 

 a0 a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 

Source C 199 -5 16 -8 5 -7 -3 -2 1 -4 -1 

Mercury 69 2 2 12 14 -6 2 1 5 -1 0 

Sodium 0 0 0 0 0 0 0 0 0 0 0 

 
 
Table 4: The spikes of real spectra.  
 List of locations and weights of all spikes 
Source C  
Mercury (404.7, 5.1), (435.8, 10.4), (491.6, 0.3), (546.1, 13.7), 

(577.8, 19.3), (693.8, 2.3) 
Sodium (589.0, 31.95) 

 
In summary, the composite model is able to meet all 

representation criteria. The decomposition allows us to 
represent arbitrary spectra through a small number of 
parameters while maintaining good accuracy, and the re-
sampling enables us to achieve linear performance. Also in 
this model, the parameters are portable and easy to adjust 
for tradeoffs between accuracy and compactness. 
 Note that the idea of separating impulses from the 
smooth background was previously proposed by Sharma 
and Trusell [17] to abstract correct fluorescent spectral data 
from noisy measurement. But in this paper, the 

decomposition is based on the general representation criteria 
for various application areas. (Further mathematical and 
physical considerations behind the composite model can be 
found in [19].) Furthermore, this paper proves the 
sufficiency of a low-dimensional representation and 
proposes the re-sampling technique, which provide the 
theoretical foundation and practical efficiency.  
 

Applications 
Image Synthesis 
Most rendering techniques are color-based, which describes 
lights and objects with RGB triplets typically. However, this 
approach is not only limited in accuracy [10], but also 
incapable of handling fluorescent illumination and special 
optical phenomena such as light dispersion, interference and 
diffraction. To eliminate these drawbacks, considerable 
effort has been made on spectral rendering where spectra are 
represented with sampling [3, 9], linear models [14], and 
polynomials [7, 15]. However, new problems arise due to 
the limitations of these methods, as shown in Talbe 1. Now 
the composite model meets all representation criteria and 
therefore will advance the research [18].  

As an application example, Figure 3 displays images of 
colorless and colored diamonds that are rendered based on 
the composite model. Both images demonstrate rainbow-
like colors due to light dispersion. Using the composite 
model, light dispersion can be generated in a 
straightforward way with a ray tracer. That is, we only need 
to spawn a series of dispersed monochromatic rays when a 
light ray enters a dispersive object (such as the diamond), 
and each monochromatic ray can be perfectly represented 
with a spike in the composite model. 

 
Figure 3: Rendered images of a colorless (left) and colored 
diamond (right) based on the composite model.  
 
Image Understanding 
Spectral images (every pixel provides a SPD) are easier to 
analyze than color images. Consider the determination of 
inter-object reflections. At a pixel where one object reflects 
another, the outgoing SPD )(3 λS  is provided by this pixel, 

the reflectance )(2 λS  by some nearby pixels, and the 

incident SPD )(1 λS  by the pixels where the reflected object 
is located. Thus one can verify whether or not Eq. (1) is 
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satisfied to determine an inter-object reflection. However, a 
spectral image requires much more storage space than a 
color image, and the composite model is appropriate for 
representing such images because it is compact. 

To determine inter-object reflections in a color image, 
because for colors we do not have a verification equation 
corresponding to Eq. (1), a reliable judgment has to rely on 
coherent and consistent conditions for many pixels, which 
makes the problem difficult. So far color image analysis has 
not been sufficiently successful [11]. But it is clear that a 
robust solution relies on accurate spectral relationships and 
the composite model provides such a basis.  
 
Storage and Communication of Spectral Images 
Spectral images have become available from measurement 
in recent years [20]. One problem of spectral images is that 
they require a great deal of data to represent, which is 
disadvantageous for storage and communication. Because 
the composite model is both accurate and compact, it 
optimizes the storage and communication of spectral 
images. Consider a spectral image for a scene involving 
fluorescent lights. To represent a SPD from 380 nm to 780 
nm with the sampling method, at least 400 sample points 
should be used to avoid missing any spikes. But using the 
composite model only about 20 parameters (12 for the 
smooth background and 8 for spikes) are needed. The 
composite model remarkably improves the compactness.  
 
Deriving Spectra from Colors 
In practice, it is very likely that an application needs some 
spectra but their data are not available. An effective solution 
is to derive the missing spectra from colors. A simple 
approach is to assume that a smooth spectrum only contains 
the three lowest Fourier components [6, 8, 21]. According to 
Eq. (7), this corresponds to 

 3,2,1,
4 ,11,11

,00 ==++ kXbbaa
aa

kkk
k  (18) 

where 0a , 1a , 1b , and kX  are known and 0a , 1a  and 1b  
of the spectrum are to be solved. In deriving the reflectance 
or transmittance of a material, the accuracy can be improved 
by use of the material’s appearance colors under different 
illuminatants whose SPDs are known. For example, if we 
know the appearance colors under source A and C, we can 
determine the six lowest Fourier coefficients using the six 
independent conditions (three for each appearance color).  

With the composite model, it is even possible to use 
color information to derive SPDs in a scene that contains 
fluorescent sources. Here we can rely on the fact that the 
SPDs of fluorescent sources typically have four spikes and 
they have fixed wavelengths [22]. When lights are reflected 
and transmitted, the spike number and locations remain the 
same and only their weights change. Therefore, we have 
four additional unknown parameters for the spike weights 
and they, in combination with the unknown parameters for 
the smooth background, can be solved together through 
multiple color equations.  

 
Other Applications 
The composite model is initiated to represent spectra in the 
visible range, but it is equally applicable to spectra in other 
ranges such as infrared or X-ray spectra, as well as other 
physical signals. This generality is a consequence of the 
model’s physical foundation [19]. Besides, the composite 
model provides an effective way to represent absorption 
spectra, which contain a smooth background with negative 
spikes (due to discrete absorption). Absorption spectra are 
very important in physics and chemistry for characterizing 
materials, but it is impossible to represent them with 
previous spectral models. However, with composite model, 
using negative weights for the delta-functions can represent 
absorption spectra very easily. Finally, the composite model 
provides a useful basis and constraints for color studies such 
as color constancy, synthesis and analysis. 

 
Conclusions 

In conclusion, we have proposed a composite model to 
represent spectra by decomposing them into smooth 
components and spikes. We represent a smooth component 
through its Fourier coefficients and a spike through its 
location and height. The composite model satisfies all of the 
identified representation criteria, and shows promise in 
several research areas including image synthesis, image 
understanding, storage and communication of spectral 
images, and deriving natural spectra. 

As future research, it is interesting to apply the 
composite model in various application areas. For the 
composite model itself, we can examine different 
representation candidates for both the smooth and spiky 
parts. For example, we can represent the smooth part with a 
wavelet-based expansion, and spikes with narrow Gaussian 
functions to allow finite widths and heights. Also, the 
wavelength range can be extended beyond the visible range. 
In particular, including the ultra-violet region is necessary 
when a scene involves fluorescent materials, which typically 
transform ultra-violet light into visible light. 

Although the composite model demonstrates significant 
advantages, one should remember that other spectral models 
would still be effective in special application areas. For 
example, in color studies where light sources and objects are 
restricted, the linear model can be more effective because 
it’s basis functions are specifically adapted according to the 
spectral domain. However, in solving problems with an 
open spectral domain such as in image synthesis and 
analysis, where we do not have a control of the involved 
spectra, the composite model is more appropriate to use. 
 

Appendix 
Now we analytically derive the Fourier coefficients kna ,  

and knb ,  of the CIE color matching functions. According to 

Fourier transforms, they are given by 
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Since )(λkx  are negligibly small outside ],[ maxmin λλ , we 
can expand the integral interval to ],[ +∞−∞ . Replacing 

)(λkx  with the fit Gaussians shown in Eq. (8), we obtain 
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for 3,2=k  and similar results for 1=k . Substituting 

kc,λλλ += , 22 /)2(ln4 kw=α , Ln /2πβ = , Lhk /2=γ , 

and min, λλλ −=′ kc , Eq. (A.2) becomes 
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where we have used the fact that )cos(βλ  is even and 

)sin(βλ  is odd over ],[ +∞−∞ . Since 
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we obtain 
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Substituting with the original parameters, the final results 
for 3,2=k  are 
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For 1=k , the coefficients have similar expressions except 
that each will contain two terms corresponding to the two 
Gaussians. 
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