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Abstract 

In this paper we present a comprehensive method for 
identifying probable shadow regions in an image. Doing so 
is relevant to computer vision, colour constancy, and image 
reproduction, specifically dynamic range compression. Our 
method begins with a segmentation of the image into 
regions of the same colour. Then the edges between the 
regions are analyzed with respect to the possibility that 
each is due to an illumination change as opposed to a 
material boundary. We then integrate the edge information 
to produce an estimate of the illumination field.  

Introduction 

In this paper we present a comprehensive method for 
identifying probable shadow regions in an image. Shadow 
identification is an important problem which receives 
relatively little attention. Shadow identification is relevant 
to computer vision, colour constancy, and image 
reproduction. In the case of computer vision, a shadow 
boundary often has the same effect as a segmentation error. 
Such ambiguities can increase the amount of searching 
among the possible collections of segments used to form 
objects. In the case of colour constancy, illumination which 
varies spatially over a scene presents major problems for 
most colour constancy algorithms. Furthermore, it has been 
shown that illumination change can be very useful for 
colour constancy.1,2 but the algorithms so far require the 
illumination change to be identified. This is done in [2] in 
the case of smooth illumination, but fails if there is a hard 
shadow boundary. The work in this paper is a first step in 
the integration of abrupt illumination change and colour 
constancy.  

Moving onto image reproduction, an important 
application of this work is dynamic range compression. As 
is well known, the dynamic range of natural scenes is much 
larger than that which can be reproduced. Thus, there is 
much interest in compressing image dynamic range for 
more appropriate reproduction,3-6 especially as the ability to 
record the range of such scenes is improving. The major 
contributor to the large dynamic range of scenes is 
illumination variation. Material changes rarely have a ratio 
larger than 30 to 1, whereas the differences between bright 
sunlight and a nearby shadow can easily exceed this.3 

Despite this observation, current methods do not model 
shadows. Rather, pixels are modified based on how they 
compare to simple statistics of surrounding 
neighbourhoods, often combining the results of a number 
of scales or instances. Such methods cannot distinguish 
between a dark shadow and a dark region with the same 
camera response, even if it can be argued that there is 
ample evidence suggesting one case or the other. Thus we 
posit that for dynamic range compression it is helpful, and 
perhaps necessary, to take a physics based approach. We 
will now outline such a method.  

We begin with a conservative segmentation of the 
image. As in Barnard et al.2 since we are mostly concerned 
with analyzing the illumination, it does not matter if areas 
due to surfaces with very similar colour (such as a white 
piece of paper on a white wall) are combined. These 
considerations mean that we can normally obtain a 
sufficiently accurate segmentation for the task at hand.  

Given a segmentation, we then apply a number of tests 
to pairs of neighboring segments. Some of these tests (in 
fact, the most interesting ones)  include consideration of 
other segment pairs. Each test leads to a different degree of 
belief about the boundary between the two segments being 
a shadow, and each test therefore has an associated score. 
The final score for a pair of neighboring segments is 
simply the maximal score found among all tests. From 
these edge scores we then compute the relative 
illumination field for the image, which can be used for 
colour constancy, computer vision applications, and 
dynamic range compression. We now provide additional 
details. 

Determining Crisp Shadow Edges  

Our method deals both with crisp shadows and soft 
shading. We first develop the theory for crisp shadows, and 
then introduce modifications to deal with, and take 
advantage of, the observation that shadow boundaries are 
often gradual. To estimate the plausibility that an edge is a 
shadow edge we use a number of tests, each of which has a 
score associated with it, which roughly corresponds to the 
amount of evidence that passing the test represents. The 
actual amounts are set somewhat arbitrarily. We are 
currently working towards a more principled scoring, but 
we note that preliminary results indicate that the exact 
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numbers are not that important. We remind the reader that 
the final score for the boundary is the maximal score found 
among all tests. The tests will be described in rough order 
of strength.  

The weakest test is passed if the change in camera 
response (RGB) over the boundary is simply consistent 
with a possible illuminant change. This, and many of the 
conditions which follow, depend somewhat on the 
accuracy of the diagonal model of illumination change,*7,8 
which holds fairly well for our camera.9,10 Following 
Finlayson’s work on colour constancy,11 we consider the set 
of possible illuminants to be restricted to common indoor 
and outdoor illuminations. Doing so constrains the 
chromaticities of the expected illuminants, but we consider 
their magnitudes to be unconstrained. Thus the RGB of the 
possible illuminants form a cone in RGB space. We 
construct this cone from a set of roughly 100 
measurements of sources, indoor illuminations, and 
outdoor illumination.10 Our illuminant set is available on-
line.12  

Given the diagonal model and a set of illuminants, we 
can then determine if the RGB ratio over a boundary can 
be due to an illumination change. If it is, then one side of 
the boundary (the shadow side) must be illuminated by a 
shadow illumination ( )SSS BGR ,, , and the other side must 
also be illuminated by the shadow illumination 
( )SSS BGR ,,  together with some additional non-shadow 
illumination ( )NNN BGR ,, . Thus the RGB ratio from the 
shadow side (the darker side) to the non-shadow side is 
given by: 
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where both ( )SSS BGR ,,  and ( )NNN BGR ,,  must be in the 
3D cone described above. Thus we can pre-compute the 
possible 

 





+++ NS

S

NS

S

NS

S

BB

B

GG

G

RR

R
 , ,   

based on the cones, smooth the results, and enter them into 
a discretization of the unit cube for fast access. We note 
that the fact that a shadow edge must have a strict decrease 
in each of three channels excludes some regions which 
appear to the be plausible shadows due to being darker 
overall. Specifying the nature of the decrease, as done 
above, excludes additional candidates.  

                                                        
* Consider a white patch under two different illuminants. Suppose that 
under the first illuminant the color is [r,g,b] and under the second 
illuminant the color is [r’,g’,b’]. It is thus possible to map the color of white 
under the first illuminant to the color under the second by post-
multiplication by a diagonal matrix: [r’,g’,b’] = [r,g,b] diag(r’/r, g’/g, b’/b). 
If the same diagonal matrix transforms the RGB of all surfaces (not just the 
white ones) to a good approximation, then we say that we have a diagonal 
model of illumination change.  

 

 

Figure 1: Strong evidence for a shadow: First, the change across 
the shadow boundary for both regions A and B is consistent with 
a valid shadow boundary. Second, the changes across the 
adjacent shadow boundaries are similar. Third, the reflectance A 
and B are quite different.  

 

Ratios which are valid illumination changes, as 
determined above, can usually also be due to a material 
boundary, and thus the above is only moderate evidence 
for a shadow boundary. However, shadows commonly fall 
over more than one region in an image, and exploiting this 
observation is the key to developing more powerful tests. 
For example, if the same kind of shadow falls on two 
different surface reflectances (not necessarily connected), 
then we expect to see two similar shadow ratios with 
different RGB in the shadow regions and different RGB in 
the non-shadow regions. The occurrence of two such 
parallel but distinct possible shadow jumps are less likely 
to be due to material changes than a single shadow jump, 
and thus we score this test higher. Similarly, if we observe 
three parallel shadow jumps, all with different shadow 
RGB (and non-shadow RGB), the score is higher yet (in 
this work we stop at three). We stress that for these parallel 
jump tests, the proposed illumination ratios need to be 
similar, and the proposed surface reflectances, must all be 
different. For example, the same kind of proposed 
illumination ratio observed on both a red surface (splitting 
it into light red and dark red regions) and a green surface 
(splitting it into light green and dark green) is taken as 
better evidence than either alone. 

We feel that when such shadows jumps are adjacent, 
the evidence for a shadow is even stronger. Here a shadow 
is proposed to cross over a surface boundary such that four 
segments are formed, two in shadow and two not in 
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shadow (see Figure 1). Even more evidence, is associated 
when an additional similar shadow jump (but with yet a 
different shadow RGB) occurs elsewhere in the image. 
Finally, when that third shadow boundary is adjacent to the 
other two, the score is even higher. In this case, the shadow 
boundary crosses three adjacent regions, to form 6 patches.  

We include one more test in our method. If the shadow 
jump is so large that there is no material boundary which 
can account for it, we also take this as very strong evidence 
as a shadow boundary. We currently use a ratio of 30 to 1 
as the upper limit of albedo change. 

Incorporating Soft Shadow Edges and 
Gradual Shading 

So far we have been treating shadow boundaries as crisp, 
and thus the illumination change across the boundary is 
well determined. However, it is well known that shadow 
boundaries are often quite soft, and, in fact, this 
observation has been used to classify shadow and non-
shadow edges.13 Certain segmentation approaches, such as 
region growing based on small changes between 
neighboring pixels, can sometimes properly ignore the 
shadow boundary, and grow a region which corresponds to 
physical edges only. However, it is very hard to make this 
work in a consistent fashion when there is a mix of shadow 
boundary strengths. Normally any reasonable choice of 
thresholds leads to a segmentation which stops at some 
shadow boundaries, but grows into others, and, as the 
number of shadow boundaries which are missed increases, 
so do the number of other edges which are missed. 
Therefore, we take quite a different approach. In general, 
the philosophy is to find as many of the putative shadow 
boundaries as possible, and then use the higher level 
reasoning to determine which ones are shadows. It should 
be clear that the tests developed above will fare better 
when fewer shadow boundaries are absorbed. Thus we use 
a segmentation method which ensures that the RGB's 
within each region† are within a certain small range of 
each other, which errs on the side of having too many 
segments. For example, a nicely shaded ball may have a 
number of stripes, each one representing the next increase 
in illumination with respect to our allowed RGB range.  

Given this sort of segmentation, applying the tests as 
described above may run into trouble, as the shadow 
boundaries may be divided into several steps at somewhat 
arbitrary points. The key to using such boundaries is to 
note that the steps have a well defined structure, discussed 
further below, which can be identified. Then a candidate 
shadow boundary is declared as two regions separated by 
zero or more steps. We ensure that the maximal number of 
steps are used, and therefore the steps themselves are not 
considered as shadows until later. Interestingly, the steps 
are characteristic of illumination change, and thus 
strengthen the case for the proposed shadow boundary. 

                                                        
†Technically, for the results presented in this work, we segmented using 
(r=R/(R+G+B), g=G/(R+G+B), L=R+G+B), not RGB. 

Therefore, in the case that the plausible shadow has these 
steps, the score is increased in proportion to the number of 
steps. Thus this method incorporates the use of the softness 
of shadows without relying on them. Further, it applies to 
quite large steps, such as a classic penumbra region, or big 
stripes on a lightly shaded ball. 

We now provide further details on the identification of 
the shadow steps. The first criteria is location. In general, 
we want to consider regions which are between other 
regions in the "right way". A clean criteria that covers the 
desirable cases exactly is difficult to determine. However, 
the following heuristic seems to work well. Consider a 
region adjacent to two different regions A and B, and 
connected to them via the (possibly broken) boundaries, 
bA and bB. We test whether the center of mass of the 
region is in the convex hull of bA and bB. 

We move onto the colour constraints on the step 
regions. We assume that the steps are due to varying 
illumination, specifically a blend of the illumination at the 
two regions surrounding them. This means, first, that the 
sequence of regions are each a plausible illumination 
change apart, and second, that the RGB of each step region 
is (approximately) a convex combination of the RGB's of 
the two regions surrounding it. So far, the combination of 
the location and colour tests has proven to be quite robust. 

A few remarks with regard to the integration of the 
shadow step analysis with the tests explained above are in 
order. First, the tests are applied using illumination 
changes between the two outside regions. The shadow 
steps are not used for this. However, as mentioned above, 
if the two regions being considered are separated by 
shadow steps, then the score will increase. Finally, the 
shading boundaries between the steps inherit the score 
from the outside regions.  

Determining the Illumination Field.  

For some applications, such as segmentation into regions 
of similar surface reflectance, the shadow information 
computed above may be sufficient. However, for many 
applications, we need to integrate the information to 
determine the overall illumination field. Our method for 
doing so is as follows: We simplify matters by solving for 
the logarithm of the illumination at each segment. We 
solve for the illumination field of each channel separately. 
We set up a number of equations which are solved in the 
least squares sense. To begin, we note that our method 
essentially computes relative illumination, and thus we 
specify the unknown factor by setting the sum of the logs 
of the illuminations to zero. Also, since our method is 
based on the relative changes across adjacent regions, we 
need to deal with the possibility that the graph is not 
connected. Thus we introduce an equation setting the log 
of each illuminant component to zero. Since we solve the 
equations in the least squares sense, we arrange that these 
equations have little effect, except when there is 
ambiguity, by giving them a relatively small weight. The 
system of equations described so far will ensure that the 
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recovered relative illumination field is uniformly one in the 
absence of any other information.  

Each edge between regions is a source of information. 
On the assumption that the ratio of the red pixel values for 
adjacent regions i and j are due to the illumination, we 
have: 

)log(  )log()log(
j
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ee R
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i =−    (2) 

where R

ie   is the relative value of the red component of the 
illumination at region i, and R

je  is the analogous quantity 
for region j. We weight this with the plausibility of the 
edge, p, and the length of the edge, L:  
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Similarly, to the extent we believe the edge is not a shadow 
edge, the illumination should not change at that boundary: 
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These equations are solved in the least squares sense 
for each channel. Then the illumination is set to the 
appropriate value at each region. Since there are always 
pixels which do not belong to any of the segments, we 
linearly interpolate the result for those pixels. 

Results 

We have tested our method on several complex real images 
with both distinct and subtle shadows, and have obtained 
very promising results. However, shadow identification on 
complex real images is a difficult problem, and 
misclassification does occur. One of the strengths of this 
method is that the shadow information propagation step 
serves to resolve ambiguity and mitigate the effect of 
misclassification, especially when the goal is simply an 
improved image for human viewing.  

Figure 2 shows the results on an image with a strong 
shadow, and some gentle shading due to surface curvature. 
Although not apparent in the black and white reproduction, 
there is a significant colour change across the shadow 
boundary. The background (shadow) illuminant is quite 
blue, and the foreground illuminant is quite yellow. Thus 
this scene emulates a standard outdoor scene where the 
shadows are illuminated by the blue sky, and the non-
shadow regions are illuminated by both the blue sky and 
direct sunlight. The image was taken with a Sony DXC-
930 camera which supports the diagonal model well. 
Figure 2(a) shows the input image. Figure 2(b) shows the 
candidate shadow edges with line segments joining the two 
regions sharing the edge. The plausibility of the edges is 
represented by the brightness of the segments. White 
segments join regions where there is strong evidence that 
one of them is a shadow, or more specifically, that the edge 
between them is an illumination edge. If the process were 
perfect, then adjacent regions from the same surface would 

be joined with white segments. Figure 2(c) shows the 
estimated illumination field, which is very close to the 
actual illumination field. Since the method rarely 
completely commits to a specific edge being due to an 
illumination change (i.e. "p" in (2) is rarely 1), the least 
squares fitting procedure will always produce a few 
artifacts of the material edges. We feel this is a reasonable 
tradeoff for the gain in robustness. Figure 2(d) shows the 
spatial variation of the illumination removed by dividing 
by the illumination field. Applications seeking to enhance 
dynamic range would normally provide an image 
somewhere between (a) and (d), possibly with additional 
transforms. (Removing all shading from an image is 
usually detrimental). Finally we note that Figure 2(d) has 
artifacts at the reduced/removed shadow edges. We are 
currently considering several methods for dealing with 
such artifacts. Since our method implicitly contains quite a 
good understanding of the underlying processes producing 
the edges, we feel that these problems can be dealt with.  

Conclusion 

We have developed a method for analyzing edges with 
regard to whether they are likely an illumination edge or a 
material edge. The method includes considering whether 
the edge is a possible illumination edge based on a set of 
common illuminants, whether there are similar changes 
across different surfaces, whether the edge is in a 
geometric configuration suggestive of a shadow, and 
whether the edge is too strong to be a material change. We 
integrate these criteria with the observation that 
illumination changes are often gradual or somewhat 
gradual, leading to a specific structure with our 
segmentation approach, which can be exploited. Finally we 
show how to compute an estimate of the illumination field 
from the edge hypothesis. Our method is therefore ready to 
be used in conjunction with colour constancy algorithms, 
dynamic range compression, as well as a number of 
computer vision applications. 
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Figure 2. Illustration of the method developed in this paper applied to an image. The original image (a). The segments used showing 
lines joining regions separated by a plausible shadow boundary (b). The brightness of the line is proportional to the degree of belief 
that the edge is a shadow edge. The estimated illumination field is shown in (c), and the image with the shadow regions corrected based 
on the recovered illumination is shown in (d). The appropriate amount of correction is dependent on the application. Here we correct 
for the full illumination field effect for illustrative purposes. Other than effects at the edges due to edge localization errors, the 
recovery is very good. Note that some of the minor inaccuracies in the illumination field recovery are not noticeable when used to 
enhance the image. 
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