
 

 

Illuminant Estimation: Beyond the Bases 
Jeffrey M. DiCarlo and Brian A. Wandell 

Department of Electrical Engineering, Stanford University 
Stanford, California 

 
 
 

Abstract 

We describe spectral estimation principles that are useful for 
color balancing, color conversion, and sensor design. The 
principles extend conventional estimation methods, which 
rely on linear models of the input data, by characterizing the 
distribution or structure of the linear model coefficients. 
When the linear model coefficients of the input data are 
highly structured, it is possible to improve the quality of a 
simple linear model by estimating coefficients that are 
invisible to the sensors. We illustrate these principles using 
the synthetic example of estimating blackbody radiator 
spectral power distributions. Then, we apply the principles 
to typical daylight illuminants that we measured over the 
course of twenty days in Stanford, California. We show that 
the distribution of the daylight linear model coefficients that 
approximate the daylight spectral power distributions are 
highly structured. We further show that from knowledge of 
the coefficient structure, nonlinear algorithms using N 
sensors estimate the data as well as linear algorithms using 
N+1 sensors. 

Introduction 

Linear models are an important first step in reducing the 
dimensionality of a data set. These models define a limit on 
the range of possible inputs by specifying a subspace that 
contains the original data.1,2 Characterization of the data, 
however, need not end with specifying the linear model 
basis functions. The distribution of the linear model 
coefficients may also provide useful knowledge about the 
input data.3-5 This knowledge can both increase the 
efficiency of the approximation and provide guidance when 
designing devices to measure the inputs. 

In this paper we describe spectral estimation principles 
that are useful for color balancing, color conversion, and 
sensor design. These principles build upon the linear 
methods that have been used in color science and estimation 
for many years;1,6-8 the principles extend current methods by 
offering a way to incorporate knowledge about likely data 
into the spectral estimation process. 

 
 
 
 

 

 

Figure 1. Blackbody radiators. (a) Spectral power distributions of 
a sample of blackbody radiators with temperatures between 4,000 
K and 25,000 K. The curves have been normalized to unit value at 
560 nm. (b) The percent error for the best linear model fit as a 
function of the linear model dimension. 
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Motivation 

We begin with a synthetic calculation that illustrates a 
limitation of simple linear methods for spectral estimation. 
Suppose we wish to estimate the spectral power distribution 
of a blackbody radiator. Figure 1a shows the spectral power 
distributions of a collection of blackbody radiators with 
temperatures between 4,000 K and 25,000 K normalized to 
a common intensity at 560 nm. As the figure makes evident, 
a one-dimensional linear model cannot fit these curves. 
Figure 1b shows the percent error of the best-fitting linear 
model using one to five dimensions. At least three 
dimensions are needed to reduce the fitted error below 1% 
and four dimensions fit the data at roughly 0.01% error. 

By construction, we know that variation in a single 
parameter (temperature) gave rise to the entire collection of 
spectral power distributions; yet, the dimensionality of an 
adequate linear model is at least three. Although these 
spectral power distributions were generated from a single 
parameter process (the blackbody radiator formula,9) an 
accurate linear model fit requires several dimensions. Where 
in the linear model is the information about the low 
dimensionality of the original process? 

Figure 2a shows that the distribution of the linear model 
coefficients contains the key information about the original 
one-dimensional nonlinear process. This panel shows the 
coefficients of a three-dimensional linear model of the 
blackbody radiators: the coefficients sweep out a smooth 
curve. While the dimensionality of the linear model cannot 
be reduced, because the curve of coefficients is nonlinear, 
the low-dimensionality of the controlling parameter 
(temperature) is easily observed in the distribution of the 
model coefficients. 

Figure 2b shows the relationship between the 
coefficients in another graphical format. The horizontal axis 
plots the first coefficient. The curves show how the values 
of the second and third coefficients covary with the first. 
Because the first coefficient specifies the others perfectly, it 
is apparent that a one-dimensional nonlinear model explains 
the data. 

Had we approached the data using the conventional 
linear model analyses, it is likely that we would conclude 
that these blackbody radiators span a three-dimensional 
space. We might have missed the fact that the coefficients 
fall along a curve. Knowing this fact is important should we 
design sensors to estimate the temperature of a blackbody 
radiator. Specifically, if the data span three linear dimen-
sions, then three linear sensors are necessary to estimate the 
temperature. Knowing instead that the coefficients are 
clustered on a curve, it is possible to estimate the temper-
ature from the measurement of a single sensor: three sensors 
are two too many. 

We offer this synthetic example to motivate the 
measurements described below. In these measurements, we 
analyze the distribution of coefficients of daylight 
illuminants. The purpose of the investigation was to decide 
whether simply stating the linear model basis functions, 
such as those provided by the CIE daylight model, captures 
the essential information about the illuminants. This would 
be the case if the measured coefficients for daylights are 
randomly distributed. Or, is there a great deal of structure in 
the coefficient distribution of real daylights? In that case, 
there is more to be learned by defining the distribution of 
these coefficients. 

Methods 

The methods we present can be applied to linear models of 
arbitrary dimension. We introduce the methods, however, 
using a simple example: the spectral power distribution of 
daylight incident on a building wall in Stanford, California. 
We begin with this example for two reasons. First, daylight 
illuminants play a very significant role in imaging;9 hence, 
understanding the distribution of coefficients is important 
for many applications including color conversion, color 
balancing, and sensor design. Second, it is well-known that 
the variation in incident illumination is well-described by a 
low-dimensional linear model;1,10,11 hence, the distribution 
of coefficients and computations can be illustrated using 
simple graphs. 

 

 

Figure 2. Coefficients of a three-dimensional linear model of 
blackbody radiators. (a) The curve of coefficients for the 
blackbody radiators. (b) The values of the second and third linear 
model coefficients are a function of the first coefficient, showing 
that the data are well-described by a one-dimensional nonlinear 
model. 
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Data Collection 
We used a PhotoResearch SpectraScan 650 spectro-

radiometer to collect the daylight spectral power 
distributions. This instrument measures spectral radiance 
between 380 and 780 nm with 4 nm spectral bands. The 
instrument was positioned next to a window and daylight 
illuminants reflected from an outside building wall were 
measured. Over a period of twenty days, a computer 
controlled the spectroradiometer and acquired 
measurements once a minute from dawn to dusk. During the 

acquisition period, weather conditions spanned hard rain, 
light rain, overcast, partly cloudy and clear skies. All 
measurements were dated and time-stamped using the 
internal clock of the computer. A total of 11,990 spectral 
power distributions were measured. 

At the end of the acquisition period, the 
spectroradiometer precision was measured. We made 
repeated measurements of a stable light source set to a 
variety of source intensity levels. We found that if the peak 
radiance of the light source in any spectral band was greater 
than or equal to a threshold level (3x10-3 W/m2/sr/4nm), the 
spectroradiometer was reliable to within 0.1% of the peak 
radiance. Below that threshold, the spectroradiometer 
reliability began to deteriorate. We excluded 1,234 spectral 
power distributions with a peak response less than the 
threshold value.  

For the remaining measurements, we calculated the 
illuminant spectral power distributions by dividing the 
measurements by the spectral surface reflectance function of 
the building wall. The surface reflectance function was 
measured by comparing the light reflected from the building 
wall with the light reflected from a magnesium oxide block 
in the same position. A total of 10,756 daylight spectral 
power distributions comprised our data set. Figure 3a shows 
a few examples of collected daylight spectral power 
distributions normalized to unit value at 560 nm. 

We use the term “daylight” here to refer to the light 
incident on the wall, and not in its more precise meaning of 
direct solar radiation through the atmosphere. In fact, some 
of the light incident at the wall is likely to have come from 
secondary reflections from other nearby objects (trees, other 
walls, the ground, etc.) 

Linear Model 
A linear model of the daylight spectral power 

distributions expresses the spectral power distributions as a 
weighted sum of basis functions: 
 

 Ee = Be we (1) 

 
where Ee (Nx1) is a column vector containing a daylight 
illuminant sampled at N wavelengths, Be (NxP) is a matrix 
containing P basis functions as column vectors, and we (Px1) 
is a column vector containing the daylight illuminant model 
coefficients. 

To evaluate the quality of linear model fits, we use a 
percent error measure: 

 ×−=
||||

||||

A

BA
Error 100 % (2) 

where A is the original spectral power distribution, B is the 
linear model approximation of the spectral power 
distribution, and || x || denotes the vector length of x. 

To calculate linear model basis functions that are 
designed to minimize percent error, we used the following 
procedure. First, we normalized each daylight measurement 
by its vector length. This normalization is similar to the 

 

 

Figure 3. Daylight illuminants. (a) Spectral power distributions of 
daylights from the collected data set. The curves have been 
normalized to unit value at 560 nm for display purposes only. (b) 
The percent error of the best linear model fit as a function of 
linear model dimension. 
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procedure used to build the CIE daylight model. (In that 
case the daylights were normalized to a common value at 
560 nm.) Then using the singular-value decomposition on a 
matrix containing the normalized spectral power 
distributions, we calculated the left singular matrix. The 
columns of this matrix serve as the linear model basis 
functions, Be. 

The absolute intensity of daylight contains important 
information that is useful in estimation.12 For example, if 
the daylight intensity is high, the daylight is more likely to 
be direct sunlight than atmospheric scattering. When the 
intensity is low, the reverse is probably true. An estimation 
process should not discard this information. To calculate the 
linear model coefficients of each illuminant, we, without 
losing intensity information, we multiplied the transpose of 
Be with the original unnormalized daylight spectral power 
distributions. This linear model, unlike the usual CIE 
daylight model, contains absolute intensity information 
about the illuminants. 

Figure 3b shows the decreasing percent error as a 
function of linear model dimension. For three basis 
functions the average error is 1.81%. Hence, three linear 
dimensions approximate the full spectral power distributions 
of our daylight data reasonably well.  

The daylights we have collected are consistent with the 
CIE daylight model in two ways. First, the linear model 
dimensionality needed to achieve each quality level is 
similar. To predict both relative spectral power distribution 
and intensity information to within a 5% error, the CIE 
daylight model requires three dimensions. Second, the CIE 
daylight model provides a reasonably good fit for our data. 
We did not use the model mainly because the basis 
functions used by the CIE are not orthogonal and this makes 
certain computations inefficient. 

Estimation Algorithm 
We developed a nonlinear algorithm for estimating the 

unknown/undetectable linear model coefficients from 
known/detectable coefficients. The specifics of the 
algorithm, which are beyond the scope of this paper, will be 
presented in a future paper; a general description of the 
algorithmic steps is offered here. 

The algorithm transforms the linear model basis 
functions so that the linear model coefficients can be 
divided into two groups: (A) the model coefficients that are 
measured by the camera sensors, and (B) the model 
coefficients that are not measured by the sensors because 
they are orthogonal to the sensor responsivity. The 
procedure for determining this transformation is described 
elsewhere.13 Based on this transformation, the sensor 
responses are used to measure the linear model coefficients 
in group (A). The values of these measured coefficients are 
compared with coefficients in the original data set. Samples 
in the original set that are similar to the measured 
coefficients are found. Finally, group (B) coefficients of 
these similar samples are used to estimate the group (B) 
coefficients of the measured sample. 

Results 

The goal of our measurements was to evaluate whether the 
acquired daylights fall within a small subregion of a higher 
dimensional linear model. Figure 4 shows the distribution of 
daylight coefficients of a three-dimensional linear model. 
The distribution is shown from two different points-of-view. 
As can be seen in the different panels, the majority of the 
daylight coefficients follow a curved surface very closely. 
This can be seen most clearly in panel b. The daylight 
coefficients do not fill the entire three-dimensional space; 
they are highly structured. 
 

 

 

Figure 4.  Coefficient distribution of a three-dimensional linear 
model of daylights.  Two different points-of-view are shown.  The 
distribution is a curved surface in a three-dimensional Euclidean 
space; it is not a space-filling distribution.  Hence, the first and 
second bases coefficients can be used to estimate the third basis 
coefficient. 

 
Given that the coefficients fall close to a surface, the 

coefficient positions can be specified using only two (not 
three) values. Moreover, it should be possible to estimate 
the spectral power distribution of these daylights using only 
two linear sensor measurements. We have developed a 
simple nonlinear algorithm, briefly described in the methods 
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section, to estimate the higher order coefficients (3, 4, …, 7) 
from the coefficients measured by two sensors. The 
estimates of the third basis coefficients are shown in Figure 
5. Notice that the surface has the same shape as the 
coefficient distribution in Figure 4a. The average percent 
error of the resulting daylight spectral power distribution 
using the nonlinear estimation algorithm was 1.89%. When 
using all three basis functions of the linear model, the 
percent error was 1.81%. It is apparent that two coefficients 
and a nonlinear estimation algorithm perform as well as 
three sensors and a standard linear estimation algorithm. 

 
Figure 5. Estimation surface of the third basis coefficients of 
daylights using the first two. The surface is nonlinear and matches 
the shape of the coefficient distribution shown in Figure 4a. Using 
the surface and a two-dimensional linear model, a similar quality 
fit can be obtained as using a three-dimensional linear model. 

 
Figure 6. Comparison of the percent error for two illuminant 
estimation algorithms. The solid line shows the percent error for a 
simple linear estimation algorithm. The dashed line shows the 
percent error for a nonlinear estimation algorithm in which 
invisible coefficients are estimated from measured coefficients. The 
nonlinear estimation algorithm achieves the same percent error 
using one less sensor than the linear algorithm. 

We have explored how well the nonlinear estimation 
algorithm performs with one through five sensors compared 
with a standard linear model using the same number of 
sensors. The results are shown in Figure 6. As a rough 
approximation, knowing the structure of daylight coeffi-
cients is equal to having one additional sensor. Hence, one 
can obtain the same error with fewer sensors and less cost.  

Conclusion 

Linear models are a good initial step for efficiently 
representing large data sets. Moreover, linear models work 
smoothly with classic linear mathematics so that these 
models are helpful for estimation algorithms. Complete 
characterization of a data set, however, need not end with 
calculating the linear model basis functions. Additional 
insight can be found in the distribution of the linear model 
coefficients.3 In this paper, we have shown that significant 
structure exists in the linear model coefficients of typical 
daylights, and that it is possible to estimate values of one or 
more coefficients from knowledge of the others. We have 
shown that it is possible to use the coefficient structure to 
increase the accuracy of the spectral power distribution 
estimates, or allow system designs to obtain the same 
accuracy with fewer sensors and less cost. 
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