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Abstract

This paper addresses the question of what can be said
about the colors in images that is independent of illumi-
nation. We make two main assumptions: Firstly, the il-
lumination can be characterized as Planckian (a realistic
assumption for most real scenes). Secondly, the camera
behaves as if it were equipped with narrow band sensors
(true for a large number of cameras). An alternative set of
assumptions (with broad-band sensors) leading to the same
invariant expression is also presented to show the robust-
ness of the invariant. The resulting physics-based method
results in a transformation of the original color image to a
grey-scale one which does not vary with illumination. Ex-
periments demonstrate that the distribution of grey-scale
invariants in an image is a reliable cue for illumination in-
dependent object recognition.

1. Introduction

The light reaching our eye is a function of surface reflectance
and illuminant color. Yet, the colors that we perceive de-
pend almost exclusively on surface reflectance; the depen-
dency due to illuminant color is removed through color
constancy computation. As an example, the white page
of a book looks white whether viewed under blue sky or
under artificial light.

In digital photography the color constancy problem is
usually posed as a two step process. First an estimate of
the illuminant is derived through image analysis. Second
this estimate is ’subtracted’ from the image (the image is
color corrected to remove any color cast due to illumina-
tion). The success or failure of the color constancy algo-
rithm depends mostly on the validity of the illuminant es-
timate made. After many years of research, there are now
good solutions to color constancy, solutions that deliver

good estimates of illumination most of the time[1]. How-
ever, even the best algorithms can and do fail. The failures
that occur are almost always due to images of scenes with
color diversity is low (e.g. a scene of nature containing on-
ly shades of green). This is probably not surprising since
in the pathological case of a scene containing a single sur-
face it is not possible to separate light from reflectance. A
pink surface viewed under white light is physically indis-
tinguishable from a white surface viewed under pink light.

In this paper we look at how one might usefully anal-
yse and work with color deficient scenes. What can we say
about the colors in the image that is independent of illumi-
nation? That is, we do not aim to solve the classical color
constancy problem but rather seek to identify that part of
the problem that might easily be solved. As an example it
may be possible that we can say that an image region cor-
responds to a pink or purple surface but that its not green.
This weak conclusion is useful since it may ultimately help
us to solve the color constancy problem: if a surface is pink
then it might belong to a Caucasian face and face color can
be used as a reference cue for illumination estimation.

Since we are no longer aiming to estimate the illumi-
nant but rather are pulling out scene information indepen-
dent of illumination we are really talking about color in-
variance (though we will make a strong link to classical
color constancy later). Invariants are algebraic functions of
a small number of proximal pixels which have the property
that they are independent of (by construction they cancel
out) dependency due to illumination. The key insight that
is usually exploited is that, assuming linear models of illu-
mination, and linear device response, that RGBs across an
illumination are linearly or bilinearly related. Interesting-
ly, many color invariants[2, 3, 4, 5, 6, 7] already exist and
their value has been shown in many applications. Unfortu-
nately, existing invariant approaches suffers from four in-
trinsic problems. First, the linear illumination assumption
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is over general. The non-linear Planckian locus (the region
of color space where typical illuminants lie) is parameter-
izable by two numbers: intensity and temperature. Yet, to
contain the Planckian locus using a linear model requires 3
degrees of freedom. This increase in dimensionality, nec-
essary because linear models are being used, results in an
illumination model that can describe many lights which
cannot occur in nature (it is over general). This in turn
reduces the amount of invariant information that can be
extracted from an image. Second, invariant computation
to date is only possible given spatial context (many pixels
are required) and so is sensitive to occlusion. Third, invari-
ants can be calculated only assuming there are two or more
colors adjacent to one another (not true for objects such as
bananas and oranges). Fourth, invariants can be calculated
after color constancy computation but the converse is not
true[8]: color constancy adds more information if it can be
computed.

In this paper, we bridge the gap between the classical
color constancy computation and the invariant approach.
We begin with the premise that the chromaticities of typ-
ical illuminants fall along a [Planckian] non-linear locus
parameterizable by two numbers. This is true for most
color cameras and most illuminants. With this premise
in hand, we ask: ‘does there exist exist a 1-dimensional
color coordinate, expressed as a function of the RGB or
chromaticity, for which the color constancy problem can
be solved?’ The idea here is that we take our RGB image,
convert it in some way to a grey-scale image, and then at-
tempt to map the image grey-values to those observed un-
der reference lighting conditions. We show that if a cam-
era is equipped with narrow-band sensors (or behaves as
if this were the case) then there exists a color coordinate
where color constancy computation is trivial: there exist-
s a coordinate where no computation actually needs to be
done. By construction the grey-scale image factors out all
dependencies due to light intensity and light color. We go
on to generalize this result to the case of non-narrow-band
sensors.

To validate our new invariant theory, images of differ-
ent objects under different lights are taken with a SONY-
DXC 930 camera (a camera that has an effectively narrow-
band response). Each image is converted to a correspond-
ing invariant grey-scale images. We find that the grey-scale
invariant images of the same object viewed under different
lights are almost the same. Indeed, the distribution of grey-
scales in an invariant image is shown to be a useful cue for
content based image indexing.

In section 2 of this paper we discuss color image for-
mation and image variation due to Planckian illumination.
The invariant coordinate transform, for cameras with nar-
row band sensitivities, is derived in section 3. The result is
generalized to non-narrow-band sensors in section 4. Ex-

perimental results are presented in section 5.

2. Background

An image taken with a linear device such as a digital color
camera is composed of sensor responses that can be de-
scribed by

�����
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�������������������������������� �
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where � is wavelength,��� is sensor response�(�)�"!$# !&%
(red, green and blue sensitivity),
 is the illumination and� is the surface reflectance and�*� is a camera sensitivity
function. Integration is performed over the visible spec-
trum + .

Let us assume the�*�,����� �.-,���0/1���2� : it is a Dirac
delta function with sensitivity only at some wavelength��� .
Dirac delta functions have the well known sifting property:
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Clearly, under
�87����� and 
:92����� the RGB response for a
particular surface can be related:
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To ease the notation we rewrite (3) as:;< �*8#^8%*8
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Remarkably, even Equation (4), which is really quite
simple, is an over general model of image formation. Il-
lumination color is not arbitrary (we say nothing about the
shape of
������ in Equation (1)) and so the scalars

_
,
b

andc
in Equation (4) are not arbitrary either. To see that this is

so, let us suppose that illumination might be modeled as a
black-body radiator using Planck’s famous equation[9]:
����K!$g3�h�jik8Y�Kl�m*nUoDp Tqsr / �kt l 8 ��us�
Equation (5) defines the spectral concentration of radiant
exitance, in Watts per square metre per wavelength inter-
val as a function of wavelength� (in meters) and temper-
ature g in Kelvins. The constantsiv8 and iY9 are equal to\SwyxQe �vz \3{ � a l 8�| Wm

9
and

� w es\ zsz { � a l 9 mK respective-
ly. Equation (5) does not account for varying illuminant
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po} wer. To model varying power we add an intensity scalar~
to Planck’s formula:
4����!�g3��� ~3� ik8U� l�m�n o p Tq7r / � t l 8 ���s�

While the shape of daylights and Planckian radiators
is similar, this is not true for fluorescents (which tend to
have highly localized emission spikes). But, even here E-
quation (6) can be used. This can be done because we
are not really interested in spectra per se but rather in how
they combine with sensor and surface in forming RGB-
s. For almost all daylights and typical man-made lights,
including fluorescents, there exists a black-body radiator,
defined in (6), which, when substituted in (1), will induce
very similar RGBs[9]. Interestingly, if such a substitu-
tion cannot be made, the color rendering index (broadly,
how good surface colors look under a particular light) is
poor[9]. Indeed, the lighting industry strives to manufac-
ture lights with chromaticities close to the Planckian locus.

3. Invariance at a pixel: narrow band
sensors

In this section we take our model of image formation to-
gether with Planck’s equation and show that there exists
one coordinate of color, a function of RGB, that is inde-
pendent of light intensity and light color (where color is
defined by temperature). However, to make the deriva-
tion cleaner we first make a small (and often made[9, 10])
simplifying alteration to (6). In Planck’s equation� is
measured in metres; thus, we can write wavelength���� � � a l�� where ���.� � ! � a�� (the visible spectrum is be-
tween 400 and 700 nanometers

� a l�� ). Temperature is
measured in thousands of Kelvin or equivalently� � � a2�
(where � ��� � ! � a7� ). Substituting into the exponent of E-
quation (6) we see that:

iY9g�� � � w e�\ zsz { � a l 9�6{ � a l�� �A��� � a � � � w es\ z2z { � a 9� � � ��x7�
Because� is no larger than 10 (10000K) and there is no
significant visual sensitivity (for humans or most cameras)

after 700nm,�h��x , it follows that o J�� �������V�7Jf� T��� ��� � and
so: 
�����!�g3��� ~ i 8 �Kl�mkosl'p Tq7r � z �
Substituting (8) in (2) we see that:

� � � 	�� 
������$��������-,���4/5� � �����6� ~ i 8 � l�m� o l p Tq2rM� ����� � ����s�
Taking natural logarithms of both sides of (9),

�O  ����� �O  ~�¡ �¢  ���������s��� l�m� iv8U�£/ iU9g3� � � � a �
That is, log-sensor response is an additive sum of three
parts:

�¢  ~
(depend on the power of the illuminant but is

independent of surface and light color),
�O  ���������7��� l�m ik8U�

(depends on surface reflectance but not illumination) and/¥¤ T¦ N (which depends on illumination color but not reflectance).
Remembering that in (10),���§�"!&# !$% ; we have 3

relations which exhibit the same structure: each of the¨f©
R, ¨f© G and ¨f© B sensor responses are an additive sum of
intensity, surface and illumination components. By can-
celing common terms, we show below that we can derive
two new relations which are intensity independent (but de-
pends on illumination color) and from these a final relation
which depends only on reflectance.

We begin by introducing the following simplifying no-
tation: let � � � �¢  ������� � ��� l�m� i 8 � and 
 � �ª/ ¤ TN � ( �¥��'!&# !$% sensor). The following two relations, red and green,
and blue and green log-chromaticity differences (orLCDs),
are independent of light intensity:

��«= � �O  ��=¬/ �O  � ? ���­=¬/5� ? ¡ 8¦ ��
:=¬/�
 ? ���«B � �¢  � B / �O  � ? ��� B /�� ? ¡ 8¦ �]
 B /h
 ? � � �2� �
Now using the usual rules of substitution it is also a

simple matter to derive a relation that is independent of
temperature:

� «= / �]
:=®/�
 ? ���
 B /�
 ? � � «B �
� = /��K?*/ �]
:=h/�
 ? ���
 B /�
 ? � ���­B^/��K?>�� �v� �
where all �K� and 
¯� are independent of illuminant color
and intensity. Equation (12) informs us that there exists a
weighted combination of LCDs that is independent of light
intensity and light color.

4. Invariance at a pixel: non-narrow-band
sensors

4.1. A Physical Argument

Here we introduce an analytic framework in which the
illuminant-invariance at a pixel is exact for non-narrowband
sensors. Let the reflectance spectrum be a Gaussian in
some monotonic function° of wavelength:��� ° �>�)±�o lD²y³Y´2µ�¶ TT�· T � � \��

Also, let the illuminant SPD be approximated by an
exponential in° (a tolerable approximation derived above
from the black-body spectrum, and also derived earlier from
a similar argument and used to create color-correction filters[10]).

IS&T/SID Eighth Color Imaging Conference

87

IS&T/SID Eighth Color Imaging Conference Copyright 2000, IS&T




�� ° �A�)iYo�¸k¹ � � e��
In (13) and (14), a, v, s, c, and f are constants.

Then given a measured response vector� �º� �j#»% �½¼ ,
it is plausible that one can use the three response equations
to eliminate the two illuminant parameters (i and ¾ ) and
be left with a function of the parameters of the reflectance
Gaussian. Indeed, we show there is a closed-form solution
if the visual spectral sensitivities�*�,� ° � are equal-spread
Gaussians in° : ���S� ° �A�)osl ²[³M´2¿ � ¶ TT � � u2�
where À � and the variable° are expressed in units of the
width (standard deviation) of this Gaussian.

The response values��� can be expressed as� � � 	 ��� ° ��� � � ° ��
�� ° ��� °
�1±�i7� ��ÁÃÂ7Ä �OÅkÆ m osÇ l L µ T· T�È ¿ T�T RfÉ ²[Ê È µ· TsÈ ¿ � ¶ TT�Ë Ì � � �s�

where
Ä �Í� � ¡ 8Î T � .

[ NOTE: The steps in performing the integral between in-
finite limits of o L¢Ï ¹ T É B ¹ ÉKÐ�R are as follows:
1. Start with the well known result that the standard normal
probability density function in° is � ��Á � l ÅkÆ m o l ¹ T$Ñ 9 , whose
integral is 1. Then it follows that the integral ofo l ¹ T , over
infinite limits is

Á ÅkÆ m .
2. Complete the square of the quadratic ino Ï ¹ T É B ¹ ÉKÐ so

it becomeso l Ç L l Ï­R ��� Ò ¹ l ÅkÆ m X²½´sÓs¶ ��� Ò Ì T o Ð�É X T� Ó .
3. Change the variable in the integral to� ° �$��/:Ô�� ÅkÆ m �:/a wÕu BL l Ï­R ��� Ò � , so that performing the integration will bring

out the factor�AÖl Ï � ÅkÆ m . Of course, the constant factoro Ð�É X T� Ó
propagates into the final evaluation. ]

Starting with Eq.16, there is much cancellation (and re-
moval of dependence on the illuminant parameter c) when
one evaluates a ratio of two components of� :
¨�×vØ � � ��SÙ �>�º� ��Â7� �U�[/ À 9� / À 9Ù� ¡ÛÚ 9 ¡ � ¾ ¡ �Ú 9 �Y� À � / À Ù � � � � x7�

We now reveal a cyclic combination of quantities such
as in the above equation that eliminates any dependence
on the remaining illuminant parameter¾ . Given measured
sensor values� , # , % , and sensor peak-wavelengthsÀ 8��Ü , À 9 � Ø , À � ��Ý , one way of expressing the invariant is:

Þ ��� Ø /'ÝY� ¨�×vØ ����� ¡ ��Ý,/ßÜ7� ¨]×vØ �]#ß� ¡ �fÜ­/ Ø � ¨�×vØ ��%'�à� �vz �
The quantity

Þ
is the following function of the re-

flectance standard deviation
Ú
:

Þ ��/ a wÕuS�O� Ø /�ÝY��Ü 9 ¡ ��Ý�/ Ü7� Ø 9 ¡ �fÜ£/ Ø ��Ý 9 � �Ú 9 ¡ � � � ���
which is independent of the illuminant and also (inciden-
tally) of the reflectance peak wavelength

�
. Evaluated pixel-

by-pixel,
Þ

comprises the sought-after illuminant-invariant
map. The first expression for

Þ
is the same as derived

earlier[11] using von-Kries-adapted tristimulus values in
place of � , # , % . However, the earlier invariant depends
on a reference-white von-Kries denominator, and this one
does not. Therefore, the current description represents an
advance over the older theory.

4.2. A statistical argument

Though the conditions set forth in Section 4.1 seem rather
severe, they conjoin with the assumptions set forth in Sec-
tion 3 to make a larger domain of invariance for Eq. (18).
This simpler picture has the advantage that no constraint
is placed on the shape of reflectance spectra but the dis-
advantage, by definition, of requiring narrow-bandedness.
Narrow-band sensors are blind to large areas of the visible
spectrum and so are not useful for general imaging appli-
cations. However, in practice narrow-bandness need not be
implemented physically. Rather, it suffices that a camera
which has non-narrow band sensors behaves as if it had
narrow-band sensitivities. This is in fact true for many
cameras. Even when cameras do not behave as if they
were equipped with narrow-band sensitivities this condi-
tion can often be enforced. All that is required is that the
initial sensitivities are transformed to a special ’sharp’ ba-
sis which behave like narrow-band sensors. Such a trans-
formation exists for the broad band sensitivities of the hu-
man cones[12] and the spectrally broad band Kodak DCS
460 camera[13]. A grey scale invariant can be calculated
for almost all imaging devices[14].

5. Experiments

Empirically we found that a SONY DXC-930 camera (sen-
sitivities shown in Figure 1) behaved as if it had narrow-
band sensitivities. This enabled us to calculate all the terms
in (12) and so to calculate invariant images. We took 10
SONY DXC-930, RGB images (from the Simon Fraser
dataset[15]) of two colorful objects (a beach ball and a
detergent package) under the 5 illuminants: Macbeth flu-
orescent color temperature 5000K (with and without blue
filter), Sylvania Cool white fluorescent, Philips Ultralume,
Sylvania Halogen. These illuminations constitute typical
everyday lighting conditions: yellowish to whitish to bluish
lights. The luminance grey scale images, calculated by
summing � ¡ # ¡ % , are shown in the first and third
columns of Figure 2. It is clear that the simple luminance
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greá y scale is not stable across illumination. In columns 2
and 4 the corresponding invariant grey-scale images are
calculated (we map RGBs to scalars using (12) and code
these as a grey values). It is equally clear that the grey-
scale pixels in these images do not change significantly as
the illumination changes. Also notice that qualitatively the
invariant images maintain good contrast: not only have we
obtained illumination invariance but the images that result
are visually salient.
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ä
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å
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Figure 1: The spectral sensitivities for a SONY DXC-930 camera

As a more concrete test of the utility of our calculated
illuminant invariant we carried out a set of object recogni-
tion experiments. To the beach ball and detergent packages
we added 9 other colorful objects. These too were imaged
under all 5 lights[15]. For all 55 images we calculated their
respective grey-scale invariant histograms and then used
these as an index for object recognition. Specifically, we
took each light in turn and used the corresponding 11 ob-
ject histograms as feature vectors for the object database.
The remaining 44 object histograms were matched against
the database; the closest database histogram being used to
identify the object.

We found that a 16 bin invariant grey-scale histogram,
matched using the Euclidean distance metric[16], deliv-
ers near perfect recognition. Almost 96% of all object-
s were correctly identified. Moreover, those incorrectly
matched, were all found to be the second best matching im-
age. This performance is really quite remarkable. Funt et
al[15] measured the illuminant using a spectra-radiometer
and then corrected the image colors based on this mea-
surement (so called perfect color constancy). They then
indexed objects by matching corrected chromaticity his-
tograms. Surprisingly they found that they could achieve
only 92.3% recognition. Moreover, at least one object was
matched in 4th place (the correct matching histogram was
the fourth best answer). These results indicates how diffi-
cult it is to correct image colors across illumination even
when the light is known. In contrast, the invariant calculat-
ed here appears to be more stable (or at least more salient)
and this is reflected in better recognition results.

Funt et al also used a variety of color constancy algo-
rithms, including max RGB, grey-world and a neural net
method[17, 18, 19], as a preprocessing step in color dis-
tribution based recognition. All methods tested performed
significantly worse than the perfect color constancy case.
No algorithm delivered supported more than a 70% recog-
nition rate.

Other color invariant based methods, predicated on func-
tions of many image pixels, have also been tried on the
same data set[8]. None delivered results better than the
96% recognition rate reported here.

6. Conclusions

In this paper we looked at image formation under Planck-
ian illumination. For the special case of cameras equipped
with narrow-band sensors or cameras that behave as if they
had narrow band sensitivities, we showed that it is possible
to synthesise a grey-scale image which does not vary with
illumination. This result is verified by experiment: grey-
scale invariant histograms are used as a cue for recogniz-
ing objects viewed under different illuminants. The result
is generalized to the case of non-narrow-band sensors.

Acknowledgements

Research at the University of East Anglia was supported
by EPSRC grant GR/L60852 and Lightseer Ltd.

References

[1] G.D. Finlayson, S.D. Hordley, and P.M. Hubel.
Colour by correlation: a simple unifying theory of
colour constancy. InIEEE international conference
on computer vision, pages 835–842, 1999.

IS&T/SID Eighth Color Imaging Conference

89

IS&T/SID Eighth Color Imaging Conference Copyright 2000, IS&T



[2]è B.V. Funt and G.D. Finlayson. Color constant color
indexing.PAMI, 17(5):522–529, May 1995.

[3] S.K. Nayar and R. Bolle. Computing reflectance ra-
tios from an image.Pattern Recognition, 26:1529–
1542, 1993.

[4] G. Healey and L. Wang. The illumination-invariant
recognition of texture in color images.Journal of
the optical society of America A, 12(9):1877–1883,
1995.

[5] G. Healey and D. Slater. “Global color constancy:
recognition of objects by use of illumination invari-
ant properties of color distributions”.Journal of the
Optical Society of America, A, 11(11):3003–3010,
November 1994.

[6] G.D. Finlayson, S.S. Chatterjee, and B.V. Funt. Col-
or angular indexing. InThe Fourth European Confer-
ence on Computer Vision (Vol II), pages 16–27. Eu-
ropean Vision Society, Springer Verlag, 1996.

[7] G.D. Finlayson, B. Schiele, and J.L. Crowley. Com-
prehensive colour image normalization. InThe Fifth
European Conference on Computer Vision. European
Vision Society, Springer Verlag, 1998.

[8] G.D. Finlayson and G.Y. Tian. Color normalization
for color object recognition.International Journal on
Pattern Recognition and Artificial Intelligence, pages
1271–1285, 1999.

[9] G. Wyszecki and W.S. Stiles.Color Science: Con-
cepts and Methods, Quantitative Data and Formulas.
Wiley, New York, 2nd edition, 1982.

[10] C. McCamy. A nomograph for selecting light-
balancing filters for camera exposure of color films.
Photog. Sc. Eng., 3:302–304, 1959.

[11] M.H. Brill and G. West. Spectral conditions for color
constancy via von kries adaptation. InAIC COLOR
81, 1981. paper J10.

[12] G.D. Finlayson and B.V. Funt. Coefficient channels:
Derivation and relationship to other theoretical stud-
ies. COLOR research and application, 21(2):87–96,
1996.

[13] G.D. Finlayson and M.S. Drew. Positive bradford
curves through sharpening. InIS&T and SID’s 7th
Color Imaging Conference. 1999.

[14] G.D. Finlayson and S.D. Hordley. Uk patent appli-
cation no. 0000682.5. Under review, British Patent
Office.

[15] B.V. Funt, K. Barnard, and L. Martin. Is machine
colour constancy good enough. InThe Fifth Euro-
pean Conference on Computer Vision (Vol II), pages
445–459. European Vision Society, 1998.

[16] J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and
W. Niblack. Efficient color histogram indexing for
quadratic form distance functions.IEEE transac-
tions on Pattern analysis and Machine Intelligence,
17(7):729–735, 1995.

[17] E.H. Land. The retinex theory of color vision.Scien-
tific American, pages 108–129, 1977.

[18] R.W.G. Hunt.The Reproduction of Color. Fountain
Press, 5th edition, 1995.

[19] V. Cardei B.V. Funt and K. Barnard. Learning col-
or constancy. In4th IS&T and SID Color Imaging
Conference. 1996.

Figure 2: Raw luminance images of a beach ball box and Tide
detergent box calculated across 5 coloured lights (cols 1 and 3)
are compared with the corresponding invariant grey-scale images
(cols 2 and 4) .
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