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Abstract

Colour data always has a limited accuracy, which is
caused by two separate effects. Experimental random er-
ror is induced by the actual measurement. Quantisation
error results from the quantised representation of the data.
Both error types propagate through the processing, while
quantisation in intermediate steps can cause additional er-
ror. Existing methods deal only with the propagation of
random error, or with the effect of initial quantisation.

We study the combined effect of both error types and
arrive at the result that their error variances can be added.
For the case of successive quantisations, we propose a com-
putational method for calculating the output error. We il-
lustrate this by numerical data for various transforms.

1. Introduction

Processing of colour information usually starts from colour
measurements. They have one common property: as ex-
perimental data they always contain some noise. This noise
causes uncertainty about the exact values, called experi-
mental error. Depending on its origin, the noise can have
different characteristics.

When the measurements are processed, the experimen-
tal errors propagate and yield errors on the output values.
These can become much larger than the input errors, espe-
cially when non-linear transforms are involved.

Determining the output error is important because it is
a measure of the reliability and robustness (invariance for
small input variations) of different colour transforms. The
basic mathematical tools for error propagation analysis are
well established, although seldom used in practice [5].

In these methods an important type of errors is not con-
sidered, namely those introduced by representing data in a
quantised way. The initial quantisation is usually chosen
in such a way that the additional error is small. However,
intermediate processing steps act on quantised data and re-
quantise them, which can cause much larger errors.

We will propose a method for dealing with quantisation
errors and combining them with experimental errors. We
will establish a computational method for evaluating the
effect of quantisation in intermediate processing steps.
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2. Error Propagation

2.1. Error Propagation Methods

The goal of error propagation is to determine the uncer-
tainty or error on the output data, given the errors on the
input data.

2.1.1. Analytical Error Propagation

Often, the measurement of a quantity x is affected by an
additive error e, (a random variable with zero mean and
variance 02). The output of the measurement is also a ran-
dom variable:

T = iy t+ ey

For an unbiased estimation, the expectation value y,, equals
the true value . When z is transformed to y = f(z), y
is also a random variable. When the function f is suffi-
ciently smooth, the error variance of y can be computed
analytically using a Taylor series expansion [5]. This is
the principle of analytical error propagation.

‘When more than one variable is involved, the random
errors and their correlations can be described by a covari-
ance matrix. The main problem of analytical error prop-
agation is that its use is limited to continuous functions,
which excludes quantisation operations.

2.1.2. Interval Computation

When the error is confined to a well defined interval, in-
terval computations can be used. The error bounds on the
input are processed to yield an output error interval, which
should be interpreted as worst case error interval. This
method is well suited for calculating the effects of input
quantisation. For multiple, correlated variables, the error
estimates often become unreliable.

2.1.3. Stochastic Methods

In stochastic error propagation, the distribution of the input
errors is modelled. From this, a large number of possible
inputs are generated and processed. The distribution of the
outputs yields an estimate for the output errors.
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2.2. Error Propagation in the Colour Literature

Analytical error propagation is applied to colour transforms
in [1]. Based on sensor uncertainty, the uncertainty in the
transformed co-ordinates is derived. Results are presented
as ellipsoids of statistical confidence in CIE L*a*b* space.
A practical application of this, starting from a camera sig-
nal through colorimetric transforms, is given in [2].

The best known example of how non-linear calcula-
tions can lead to large output errors is the instability of
hue co-ordinates near the achromatic axis. An analysis of
this effect is given in [7], where a sensor noise model is
given, and an analytical derivation is given for normalised
r g b values and for hue.

Quantisation effects have been studied in [6]. Only er-
rors due to the quantised input space are considered. Cal-
culations are made that show how a uniform input quanti-
sation results in non-uniform output errors. For the case of
XYZ to CIEL*a*b*, formulae are derived for determining
the maximal errors. A striking illustration of the effects of
quantisation is given in [3]. Geometric patterns in output
colour spaces are shown. It is demonstrated that the ap-
plication of different y values yields different quantisation
patterns.

3. Quantisation Error Modeling

In order to address the effects of experimental and quan-
tisation errors simultaneously, we combine methodology
from analytical error propagation and interval computa-
tions.

3.1. Error Measures

We first need a way to quantify error that is meaningful
for both experimental and quantisation errors. The maxi-
mal error (the size of the error interval) is the natural error
measure for interval computations. However, for normally
distributed errors (a reasonable model for experimental er-
rors), the error interval is always infinite. The variance,
basic error measure for normal errors, can also be used to
describe quantisation errors. Therefore, we will use it as
error measure in all following computations.

3.2. Quantisation Error

We consider quantisation into levels on a regular grid, with
distance between levels d. This maps continuous data y
(without any random error) onto discrete levels z, hereby
effectively binning the data.

r=Q() =x+4qx)
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Because x is always mapped to the nearest discrete

level for the bias ¢(x) and its variance it holds that:
—0/2 < q(x) <46/2
0<o) <(6/2)

Since the alignment of the quantisation grid is inde-
pendent of the measured value, we can assume all values
of ¢(x) to be equally probable [4]. By averaging over all
values that fall into the same bin, we obtain the average
error:
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3.3. Combining Random and Quantisation Error

Whenever the measurement of the true value is corrupted
with noise, the situation becomes more complicated:

z=Q(x +e) =x+q(x,ey)

For different realisations of e,, the measured value can fall
into different bins. Therefore we calculate the probabilities
P; that the measured value ends up in every bin. To sim-
plify the notation, we introduce the notation « = y — z;,
where x; is the nearest level to .

Pi(a) = ®((i +1/2)0 — ) — ®((i — 1/2)5 — a)

with ® the cumulative normal distribution function with
mean i, and variance o'2:

o 1 z (i—ﬂ;)z p
T) = —— e % dt
(@) opV 2T /0
The error for one position is:

i (a) = (z; — a)?

The total error becomes:

Tior() ZZPz'(a)U? (@)~ Y Pia)o}(a)

i=—00

For the second equality, it is assumed that the total proba-
bility is confined within the measurable range.
We average over « to obtain the average error, :

8
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It can be shown that:

3 P(a)o¥(a)

i

< Opy >=00+ <o) >

This means that quantisation error and random error can
be combined by adding their variances.

Besides average error values, we can compute extreme
values. The minimum occurs for @ = 0 and the maximum
for @ = §/2. The evolution of these error bounds, together
with the average error, is shown in Fig. 1.
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Figure I: Relative increase in error variance o, /(7,2L due to

. . . . 2 ..
quantisation for varying ratio § /o°. The average, minimal and
maximal curves are shown.

3.4. Successive Quantisations

The previous averaging calculations were based on the ran-
dom and equally probable occurrence of measured val-
ues with respect to the alignment of the quantisation grid.
When several quantisations are performed successively, this
assumption is no longer valid. The combined quantisation
effect is not the sum of the individual quantisation vari-
ances, has to be calculated in a different way.

The first quantisation bins the data into m levels. The
second quantisation acts on the quantised levels z; and re-
quantises them into n levels @), (z;). The average error
can still be calculated as an average over an original bin:

wi-i-'sTm
(Qn(zi) —x)*dx

8
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1
<ol >=—

m

Using o = x — ;, this can be rewritten to:

o

m

1 /=
<ol>= 5_/ , (Qn(z;) — z; + a)*da
o _L0my 1 N2
< Ui >= 3( 2 ) + 6m (Qn(xz) -Tz)

The first term is the error caused by the initial quantisation.
The additional term describes the increase in error caused
by the shifting of levels z; away from their position in the
middle of the bin. This term is only zero when all levels
remain unchanged, which only occurs when n is a multi-
ple of m. This includes the trivial case of two identical
quantisations.
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The effect can be broken down into numbers that are
relatively prime. E.g., a conversion from 256 to 200 lev-
els can be treated as a conversion from 32 to 25 levels,
repeated 8 times.

In the more general case a function f is applied be-
tween the first and second quantisation. The error becomes:

)
=it i

(@n(f(zi) — f0))*dx

)
Ti— 5+

1
<ol>=—

m

Because f can be an arbitrary function, this error can only
be computed numerically. However, when f is succifi-
ciently smooth, meaning that it can be approximated lin-
early over the size of a single bin, we can expand f(x) in
a Taylor series around z;:
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Again, the first term is the initial quantisation error per
bin, now rescaled with f’(z;)?, the squared derivative of f
at x;. The second term expresses the additional error due

to shifting caused by the second quantisation.

3.5. Multiple Variables

The previous results were all obtained for a single variable.
For a multiple variable space the Euclidean distance is the
obvious choice as a measure of the total error. It allows
to calculate the error variances of the different variables
separately and combine them afterwards.

When multiple variables and their errors are uncorre-
lated, they obviously can be treated exactly like single vari-
ables. It can be shown that this also holds for correlated
variables. The variances due to experimental and quanti-
sation errors can be calculated separately and combined by
adding variances.

To compute the error associated with a certain output
variable that is a mixture of input variables we proceed as
follows. We use conventional covariance error propagation
to compute the error stemming from the input experimen-
tal error. We compute the quantisation error of the input-
output system, and finally add both errors. This gives all
necessary tools needed to study realistic colour transforms.

From a practical point of view the calculations become
very computationally expensive if we use a 3 dimensional
space with more than 8 bits per co-ordinate. This is the
case for colour transforms in practice. E.g. in a conver-
sion from CIE XYZ to CIE L*a*b*, in order to get input
quantisation errors of the order of 1AFE one has to start

)2 da
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Figure 2: < 0y(m,n) > for various (m,n) combinations in a
m — n requantisation. Underneath is < o4(m) >, the error of
the initial quantisation.

for a 13 bit quantisation in the XYZ space (cfr. [6]). Our
future work will focus on developing efficient computa-
tional methods which will enable more practical evaluation
of colour conversions.

4. Simulation Experiments

We now apply the formulae of the previous section in a
series of simulation experiments. We compute the increase
in average quantisation error due to requantisation. For this
we evaluate the expressions for < o? > numerically. All
results are for uniform input densities and for transforms
acting on the unity interval.

4.1. Transform from m to n levels

The simplest case is a transform with F'(z) : x — x, where
only the number of quantisation levels changes. Results
are shown in Fig. 2. The smallest errors lie on the diagonal
(identical quantisers). The error also increases when the
number of levels is increased (n > m) and the order of the
quantisations makes a difference: m — n yields a different
result than n — m.

4.2. Consecutive Transforms (m — n — p)

More than two quantisations can be applied in succession.
The result does not only depend on the number of input and
output levels, but also on the intermediate quantisation. We
present results for a transform series for which the number
of initial input and final output levels are both fixed. A
single intermediate quantisation is considered, for which
the number of levels is varied.
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Figure 3. 0 4(m n,p) atransformm — n — 32with8 < n < 50.
The solid line is for m = 64, the others for m = 63 and m = 65.

Results are shown in Fig. 3. When m is a multiple of
p, the error decreases smoothly with increasing n, untill
the value of the direct transform (m — p is achieved at
n = p. For all n > p the error remains constant. When
m and p are relatively prime, the evolution shows the same
tendency but the curve is much more erratic, with a sharp
dip atn = p.

4.3. Transform with ~

Non-linear functions in colour transforms very often take
the form of an exponential, with - as exponent: x — z7.
The result of this is that part of the range is expanded,
and the other part compressed. When the output is re-
quantised, the new distribution makes that the errors are
no longer equal for all bins. For the expanded part, the er-
ror increases slightly because of the repositioning. For the
compressed part, bins are pooled and the increase is more
drastic. The result is shown in Fig. 4. The error has a sharp
minimum for 7 = 1 and oscillates with a frequency pro-
portional to n. Interestingly, a small deviation of v from
1 can cause an error increase as large as that of a large
deviation.

4.4. Transform with varying slope

Often the transformation function is not a mathematical
function, but an interpolation between some measured val-
ues. As an example of this, we consider a piecewise linear
mapping. We use a transform with 5 equidistant points.
The first and last points are fixed to 0 and 1, the three mid-
dle points can vary according to a normal distribution with
standard deviation o,.
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Figure 4: o for a requantisation n — n with a function v — x”
(0.4 < v < 2.2) in between.

Because of the random position of the intermediate
points, it was needed to resort to stochastic error propa-
gation method. We repeated the experiment 10000 times
until a statistically large enough sample was obtained.

It can be seen from Fig. 5 that below a certain limit,
no additional error is introduced as all the quantised input
levels remain mapped to the same output levels. For larger
deviations, o, increases nearly linearly with o,. Note that
the erratic behaviour for o}, > 0.0045 is caused by a limi-
tation of the experiment and not a quantisation effect.

5. Conclusions

We investigated the effect of quantised representations on
the accuracy of colour specifications. We derived the nec-
essary theorical results for combining quantisation errors
with experimental random errors. The quantisation error
can be expressed as a variance, and can be combined with
other error sources by adding variances.

Secondly we proposed a method for dealing with suc-
cessive quantisations. We presented a formula which can
be used for practical numerical investigation of the effect.
For every initial quantised level the extra error due to re-
quantisation can be computed. This method was illustrated
with various examples. Both methods can be used together
to incorporate the effects of quantisation into a general er-
ror analysis.

To analyse a complete system, the procedure should be
the following:

1. The experimental errors should be estimated and prop-
agated using conventional error propagation.

2. The quantisation errors should be computed numeri-
cally for the total system.

3. The total error is obtained by adding variances.

74

Copyright 2000, IS&T

0.15
0

I I I
0.001 0.002 0.003 0.004 0.005

Figure 5: a4 for a piecewise linear transform, for which the slope
varies with a normal perturbation term o, (0 < op < 0.006).
The input and output quantisations are fixed at 256 levels.
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