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Abstract

The Bradford chromatic adaptation transform, empirically
derived by Lam, models illumination change. Specifically, it
provides a means of mapping XYZs under a reference light
source to XYZs for a target light source such that the corre-
sponding XYZs produce the same perceived color.

One implication of the Bradford chromatic adaptation
transform is that color correction for illumination takes
place not in cone space but rather in a ‘narrowed’ cone space.
The Bradford sensors have their sensitivity more narrowly
concentrated than the cones. However, Bradford sensors are
not optimally narrow. Indeed, recent work has shown that it
is possible to sharpen sensors to a much greater extent than
Bradford.

The focus of this paper is comparing the perceptual er-
ror between actual appearance and predicted appearance of a
color under different illuminants, since it is perceptual error
that the Bradford transform minimizes. Lam’s original ex-
periments are revisited and perceptual performance of the
Bradford transform and linearized Bradford transform is com-
pared with that of a new adaptation transform that is based
on sharp sensors. Perceptual errors in CIELAB ∆E, ∆ECIE94,
and ∆ECMC(1:1) are calculated for several corresponding color
data sets and analyzed for their statistical significance. The
results are found to be similar for the two transforms, with
Bradford performing slightly better depending on the data set
and color difference metric used. The sharp transform per-
forms equally well as the linearized Bradford transform: there
is no statistically significant difference in performance for
most data sets.

1. Lam’s Experiment

In his experiment to derive a chromatic adaptation transform,
Lam1 used 58 dyed wool samples. His main objectives when
choosing the colors were that the samples represent a rea-
sonable gamut of chromaticities corresponding to ordinary
collections of object colors (see Figure 1), and that the sam-
ples have various degrees of color constancy with regard to
change of illuminant from D65 to A.

To evaluate the samples, Lam used a memory matching
experiment where observers are asked to describe the color

appearance of stimuli in relation with a memorized color
ordering system. Lam trained the observers on the Munsell
system. Each observer was asked to describe the appearance
of the samples in Munsell hue, chroma and value terms. The
observers were fully adapted to the illuminant before they
began the ordering. He used five observers with each ob-
server repeating the experiment twice, resulting in ten color
descriptions for each surface and for each illuminant, respec-
tively.
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Figure 1: Distribution of Lam’s 58 samples in CIELAB space,
measured under D65

Lam converted the average Munsell coordinates of each
sample under illuminant D65 and A to CIE 1931 Y, x and y
values so that any color difference formula can be applied to
the data. He calculated tristimulus values using the 1931
CIE equivalents of Munsell samples under illuminant C.2

To calculate Munsell equivalent values under D65, he used
the Helson et al.3 chromatic adaptation transform to correct
for the illuminant change from C to D65. This correction
assumes that the Munsell chips are virtually color constant
when changing illuminants from C to D65. It should be
noted that he used the same illuminant to transform the
Munsell coordinates of samples estimated under both D65
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and A, justified as he trained the observers on the Munsell
coordinate set using D65.

Lam observed systematic discrepancies between the
measured sample values under D65 and those obtained from
visual inspection under D65. Newhall et al.4 found similar
effects in their comparisons of successive (i.e. memory)
matching with simultaneous color matching experiments.
To calculate the correct corresponding colors under illumi-
nant D65, he therefore added the difference between the
measured sample value and the observed sample value under
D65 to each observed sample value using additive correction
in CIELAB space.

Lam was now in a position to derive a chromatic adap-
tation transform, i.e. to find a mapping that related his cor-
responding color data. In his derivation he adopted the
following set of constraints: (1) the transform should main-
tain achromatic constancy for all neutral samples, (2) it
should work with different adapting illuminants, and (3) it
should be reversible (i.e. when a particular color is trans-
formed from A to D65, and back to A again, the tristimulus
values before transformation and after transformation back to
A should be the same). The Bradford chromatic adaptation
transform, called KING1 in his thesis, is based on a modi-
fied Nayatani transformation5 and is as follows:
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the tristimulus values of the reference and test illuminants,
respectively, through equation (1).
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2. Linearized Bradford Transform

In some color management applications, the non-linear cor-
rection in the blue of the Bradford transform is considered
negligible and is not encoded.6 The linear Bradford transform
is simplified to:
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Quantities R G Bw w w, ,  and R G Bw w w
' ' ', ,  are computed from

the tristimulus values of the reference and test illuminants
by multiplying the corresponding XYZ vectors by MBFD.

3. Spectral Sharpening

One implication of the Bradford chromatic adaptation trans-
form is that color correction for illumination takes place not
in cone space but rather in a ‘narrowed’ cone space. The
Bradford sensors (the linear combination of XYZs defined in
the Bradford transform) have their sensitivity more narrowly
concentrated than the cones (see Figure 2). Additionally, the
long and medium Bradford sensitivities are more de-correlated
compared with the cones. However, Bradford sensors are not
optimally narrow. Recent work has shown that it is possible
to sharpen sensors to a much greater extent than Bradford.7

These ‘sharp’ sensors are the most appropriate basis for
modeling and/or computing adaptation of physical quantities
(raw XYZs) across illuminants, i.e. for solving the non-
perceptual adaptation problems when treating XYZs as the
important units.

Though perceptual data was not used to derive spectrally
sharpened sensors, spectral sharpening does appear to be
psychophysically relevant. Indeed, sharp sensors have been
discovered in many different psychophysical studies. Foster8

observed that when field spectral sensitivities of the red and
green response of the human eye are determined in the pres-
ence of a small background field, the resulting curves are
more narrow and de-correlated than the regular cone re-
sponses. These sharpened curves tend to peak at wavelengths
of 530 nm and 605 nm, respectively.
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Figure 2: Normalized white-point preserving sharp transform (solid) from A to D65, derived from Lam’s experimental data, compared
with the Bradford transform (dash), and normalized L,M,S cone responses (dot).

Poirson and Wandell9 studied the color discrimination
ability of the visual system when targets are only briefly
presented in a complex display. The spectral sensitivities
derived from their experimental data peak relatively sharply
around 530 and 610 nm.

Thornton10 postulated that the visual response consists
of sharp sensors with peak wavelength around 448, 537, and
612 nm by comparing the intersections of the spectral power
distributions of matching light sources. He found that light
sources designed with these peak wavelengths minimize
metamerism.

Brill et al.11 discussed prime-color wavelengths of 450,
540, and 605 nm. They proved that monitor primaries based
on these wavelengths induce the largest gamut size, and that
these monitors are visually very efficient. The color match-
ing functions derived from these primaries, when linearly
related to the CIE 1931 2º color matching curves, are sharp
and de-correlated.

5. The Sharp Adaptation Transform

The sharp adaptation transform used for this experiment is
derived from the spectral sharpening algorithms described by
Finlayson et al.7 The performance of diagonal-matrix trans-
formations that are used in many color constancy algorithms
can be improved if the two data sets are first transformed by
a sharpening transform T.

Using Lam’s experiment, the prediction of the corre-
sponding colors under D65 should approximately equal

        ST PT≈ DD     (5)

where S  is a 58 x 3 matrix of corresponding color XYZs
under illuminant D65, P is a 58 x 3 matrix of the measured

XYZs under illuminant A and DDDD is the diagonal matrix
formed from the ratios of the two sharpened white-point
vectors RGBD65 and RGBA, derived by multiplying vectors
XYZ D65 and XYZA with T.

The matrix T is derived from the matrix M  that best
maps P to S minimizing least-squares error.12

 ( )M P P P S= −T T1 (6)

However, while M calculated using equation (6) results
in the smallest mapping error, it will not fulfill the require-
ment that particular colors are mapped without error, i.e.
preserving achromaticity for neutral colors. Therefore, M
was derived using a white point preserving least-squares re-
gression algorithm.13 The intent is to map the values in P
to corresponding values in S  so that the RMS error is
minimized subject to the constraint that, as an artifact of the
minimization, the achromatic scale is correctly mapped. For
completeness, the mathematical steps are summarized below
to allow the interested reader to implement the method.
However, it is possible just to assume that such a transform
exists and skip over the next two equations.

In order to preserve white:

M D ZN= + ( )    (7)

where D is the diagonal matrix formed from the ratios of
the two white point vectors XYZD65 and XYZA respectively.
Z is a 3 x 2 matrix composed of any two vectors orthogonal
to the XYZA vector. N is obtained by substituting Z , N  and
D in equation (6) and solving for N.

N Z P PZ Z P S Z P PD= −−[ ] [ ]T T T T T T1 (8)
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The sharpening transform T can be derived through ei-
genvector decomposition of the general transform M.

M UD U= −
iagonal[ ] 1 (9)

where T is equal to U.
The predicted corresponding colors under illuminant

D65 of Lam’s 58 samples, using the sharp transform, are
calculated as follows:

        S PT T≈ −DD[ ] 1 (10)

6. Comparison of the Bradford and Sharp
Transforms

Applying the resulting sharp transform, derived via data-
based sharpening of the corresponding colors of the 58 Lam
samples under illuminants A and D65 minimizes the RMS
error between corresponding XYZs. It also yields sensors
that are visibly sharper than those implied by the Bradford
transform (see Figure 2). However, what we are most inter-
ested in is to compare the perceptual error between actual
appearance and predicted appearance of a color under different
illuminants using both the Bradford and the sharp transform.

Several corresponding color data sets were used to com-
pare the performance of the Bradford, linearized Bradford and
the sharp transform. Together they form a set accumulated
by Luo and Hunt for the purpose of deriving and evaluating
color appearance models and chromatic adaptation trans-
forms.14 Table 1 lists the characteristics of the data sets used
in this study.

The actual and predicted XYZ values were converted to
CIELAB space. Three perceptual error prediction methods,
∆ELab, ∆ECIE94, and ∆ECMC(1:1) were applied. One-tail student-
t tests20 for matched pairs were used to compare the Bradford,
the linearized Bradford and the sharp data sets to find if the
variations in errors are statistically significant. The null
hypothesis was that the mean of the difference between the
Bradford or linearized Bradford and sharp prediction error is
equal to zero. The alternative hypotheses were that either one
or the other prediction is better. For comparison between the
Bradford and the sharp transforms, the RMS and mean color
differences, and the t-test results for 95 and 99 percent confi-
dence levels are listed in Tables 2, 3, and 4. Tables 5, 6, and
7 list the results for the linearized Bradford and the sharp
transforms.

For Lam’s corresponding color data, the Bradford trans-
form does perform better than the sharp transform when the
color error metric applied is ∆E (Table 2). However, there is
no statistically significant difference at the 95 or 99 percent
confidence level in using either Bradford or sharp to predict
corresponding colors under illuminant D65 using either
∆ECIE94 or ∆ECMC(1:1) (Tables 3 and 4). That is, the sharp
transform works equally well as the Bradford transform.

For the other 15 data sets, Bradford outperforms sharp
for 3 or 5 sets, depending on the color difference metric ap-
plied. Sharp performs better for one of the sets. For the
other data sets, there is no statistical difference between the
two transforms.

Comparing the sharp and the linearized Bradford trans-
form (Tables 5, 6, and 7), the sharp transform performs ei-
ther equally well, or better for 2 or 3 out of the 16 data sets,
depending on the color difference metric used.   

Table 1: Characteristics of the corresponding color data sets used in this study.1,3,15–19

Approx. Illuminant
Data Set

No. of
Sam-
ples

Test Ref .
Sample

S i z e
Medium Experimental

Method

Lam 58 D65 A L Refl. Memory

Helson 59 D65 A S Refl. Memory

CSAJ 87 D65 A S Refl. Haploscopic

Lutchi 43 D65 A S Refl. Magnitude

Lutchi D50 44 D65 D50 S Refl. Magnitude

Lutchi WF 41 D65 WF S Refl. Magnitude

Kuo&Luo 40 D65 A L Refl. Magnitude

Kuo&Luo TL84 41 D65 TL84 S Refl. Magnitude

Braun&Fairchild 1 17 D65 D93 S Monitor&Refl. Matching

Braun&Fairchild 2 16 D65 D93 S Monitor&Refl. Matching

Braun&Fairchild 3 17 D65 D30 S Monitor&Refl. Matching

Braun&Fairchild 4 16 D65 D30 S Monitor&Refl. Matching

Breneman 1 12 D65 A S Trans. Magnitude

Breneman 8 12 D65 A S Trans. Magnitude

Breneman 4 12 D65 A S Trans. Magnitude

Breneman 6 11 D55 A S Trans. Magnitude
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Table 2: RMS and mean ∆ELab and student t-test results for BFD and sharp transform.
RMS ∆ELab Mean ∆ELab 95% confidence 99% confidence

∆ELab BFD Sharp BFD Sharp Better
than BFD

Same as
BFD

Worse
than BFD

Better
than BFD

Same as
BFD

Worse
than BFD

Lam 4.7 5.1 4.2 4.5 X X
Helson 6.2 6.2 5.4 5.3 X X
CSAJ 5.3 5.6 4.9 5.1 X X
Lutchi 6.7 7.6 5.9 6.8 X X
Lutchi D50 6.9 6.8 6.3 6.3 X X
Lutchi WF 8.9 8.7 7.8 7.8 X X
Kuo&Luo 7.0 7.7 6.1 6.9 X X
Kuo&Luo TL84 4.7 4.7 4.2 4.3 X X
Braun&Fairchild 1 4.0 4.0 3.8 3.8 X X
Braun&Fairchild 2 6.8 6.6 6.1 5.9 X X
Braun&Fairchild 3 7.6 7.3 7.2 7.1 X X
Braun&Fairchild 4 6.1 6.0 5.9 5.9 X X
Breneman 1 9.0 10.8 8.4 10.5 X X
Breneman 8 14.0 14.0 12.9 12.1 X X
Breneman 4 14.6 14.9 12.9 12.3 X X
Breneman 6 7.9 8.3 7.2 7.9 X X

Table 3: RMS and mean ∆ECIE94 and student t-test results for BFD and sharp transform.
RMS ∆ECIE94 Mean ∆ECIE94 95% Confidence 99% Confidence

∆ECIE94 BFD Sharp BFD Sharp Better
than BFD

Same as
BFD

Worse
than BFD

Better
than BFD

Same as
BFD

Worse
than BFD

Lam 3.3 3.4 2.9 2.9 X X
Helson 4.0 4.0 3.5 3.4 X X
CSAJ 3.9 4.1 3.6 3.7 X X
Lutchi 3.9 4.5 3.5 4.0 X X
Lutchi D50 4.0 4.0 3.6 3.6 X X
Lutchi WF 4.2 4.2 3.9 4.0 X X
Kuo&Luo 4.0 4.2 3.7 4.0 X X
Kuo&Luo TL84 2.8 2.9 2.6 2.7 X X
Braun&Fairchild 1 2.9 3.0 2.7 2.8 X X
Braun&Fairchild 2 5.3 5.2 4.6 4.5 X X
Braun&Fairchild 3 4.7 4.5 4.5 4.3 X X
Braun&Fairchild 4 4.3 4.1 4.1 4.0 X X
Breneman 1 5.2 5.9 4.8 5.6 X X
Breneman 8 7.4 7.9 6.6 6.8 X X
Breneman 4 8.4 8.9 7.1 7.2 X X
Breneman 6 4.3 4.9 4.0 4.7 X X

Table 4: RMS and mean ∆ECMC and student t-test results for BFD and sharp transform.
RMS ∆ECMC Mean ∆ECMC 95% Confidence 99% Confidence

∆ECMC(1:1) BFD Sharp BFD Sharp Better
than BFD

Same as
BFD

Worse
than BFD

Better
than BFD

Same as
BFD

Worse
than BFD

Lam 4.1 4.2 3.5 3.5 X X
Helson 4.7 4.7 4.0 4.0 X X
CSAJ 4.3 4.5 4.0 4.1 X X
Lutchi 4.5 5.2 4.0 4.6 X X
Lutchi D50 4.5 4.4 4.1 4.1 X X
Lutchi WF 5.3 5.2 4.8 4.8 X X
Kuo&Luo 4.6 4.9 4.2 4.6 X X
Kuo&Luo TL84 3.4 3.5 3.1 3.1 X X
Braun&Fairchild 1 3.6 3.7 3.3 3.4 X X
Braun&Fairchild 2 6.5 6.4 5.7 5.5 X X
Braun&Fairchild 3 5.9 5.7 5.6 5.4 X X
Braun&Fairchild 4 5.5 5.4 5.2 5.0 X X
Breneman 1 6.4 7.1 5.7 6.7 X X
Breneman 8 8.9 9.3 7.9 7.9 X X
Breneman 4 10.2 10.6 8.6 8.5 X X
Breneman 6 5.8 6.4 5.1 5.9 X X
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Table 5: RMS and mean ∆ELab and student t-test results for linearized BFD and sharp transform.
RMS ∆ELab Mean ∆ELab 95% Confidence 99% Confidence

∆ELab BFDlin Sharp BFDlin Sharp Better than

BFDlin

Same as

BFDlin

Worse than

BFDlin

Better than

BFDlin

Same as

BFDlin

Worse than

BFDlin

Lam 5.3 5.1 4.4 4.5 X X
Helson 6.7 6.2 5.6 5.3 X X
CSAJ 5.9 5.6 5.4 5.1 X X
Lutchi 7.6 7.6 6.9 6.8 X X
Lutchi D50 6.9 6.8 6.3 6.3 X X
Lutchi WF 9.9 8.7 8.9 7.8 X X
Kuo&Luo 7.0 7.7 6.4 6.9 X X
Kuo&Luo TL84 5.0 4.7 4.6 4.3 X X
Braun&Fairchild 1 3.9 4.0 3.6 3.8 X X
Braun&Fairchild 2 6.7 6.6 6.0 5.9 X X
Braun&Fairchild 3 7.4 7.3 7.1 7.1 X X
Braun&Fairchild 4 5.8 6.0 5.7 5.9 X X
Breneman 1 9.9 10.8 9.1 10.5 X X
Breneman 8 16.1 14.0 14.0 12.1 X X
Breneman 4 17.1 14.9 14.7 12.3 X X
Breneman 6 8.2 8.3 7.7 7.9 X X

Table 6: RMS and mean ∆ECIE94 and student t-test results for linearized BFD and sharp transform.
RMS ∆ECIE94 Mean ∆ECIE94 95% Confidence 99% Confidence

∆ECIE94 BFDlin Sharp BFDlin Sharp Better than

BFDlin

Same as

BFDlin

Worse than

BFDlin

Better than

BFDlin

Same as
BFDlin

Worse than

BFDlin

Lam 3.5 3.4 3.0 2.9 X X
Helson 4.2 4.0 3.5 3.4 X X
CSAJ 4.2 4.1 3.8 3.7 X X
Lutchi 4.0 4.5 3.7 4.0 X X
Lutchi D50 3.9 4.0 3.5 3.6 X X
Lutchi WF 4.8 4.2 4.4 4.0 X X
Kuo&Luo 4.1 4.2 3.9 4.0 X X
Kuo&Luo TL84 3.0 2.9 2.8 2.7 X X
Braun&Fairchild 1 2.9 3.0 2.7 2.8 X X
Braun&Fairchild 2 5.2 5.2 4.5 4.5 X X
Braun&Fairchild 3 4.8 4.5 4.5 4.3 X X
Braun&Fairchild 4 4.2 4.1 4.0 4.0 X X
Breneman 1 5.6 5.9 5.0 5.6 X X
Breneman 8 8.4 7.9 7.2 6.8 X X
Breneman 4 9.6 8.9 7.9 7.2 X X
Breneman 6 4.4 4.9 4.2 4.7 X X

Table 7: RMS and mean ∆ECMC and student t-test results for linearized BFD and sharp transform.
RMS ∆ECMC Mean ∆ECMC 95% Confidence 99% Confidence

∆ECMC(1:1) BFDlin Sharp BFDlin Sharp Better than

BFDlin

Same as

BFDlin

Worse than

BFDlin

Better than

BFDlin

Same as

BFDlin

Worse than

BFDlin

Lam 4.3 4.2 3.6 3.5 X X
Helson 4.9 4.7 4.1 4.0 X X
CSAJ 4.7 4.5 4.3 4.1 X X
Lutchi 4.5 5.2 4.2 4.6 X X
Lutchi D50 4.4 4.4 4.0 4.1 X X
Lutchi WF 6.0 5.2 5.5 4.8 X X
Kuo&Luo 4.7 4.9 4.4 4.6 X X
Kuo&Luo TL84 3.6 3.5 3.3 3.1 X X
Braun&Fairchild 1 3.5 3.7 3.2 3.4 X X
Braun&Fairchild 2 6.4 6.4 5.5 5.5 X X
Braun&Fairchild 3 6.0 5.7 5.8 5.4 X X
Braun&Fairchild 4 5.3 5.4 5.0 5.0 X X
Breneman 1 6.7 7.1 5.9 6.7 X X
Breneman 8 10.0 9.3 8.5 7.9 X X
Breneman 4 11.4 10.6 9.5 8.5 X X
Breneman 6 5.7 6.4 5.2 5.9 X X
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7. Conclusions

These results are very interesting. A sharp transform, derived
through white point preserving data based sharpening of an
arbitrary set of corresponding colors, performs almost as
well as the current most popular chromatic adaptation trans-
form, and slightly better than its simplified version that is
used in many color management applications.

More broadly, we believe, the experimental results re-
ported here are significant for a number of reasons. First, the
chromatic adaptation transform in CIECAM97 is based on
the Bradford transform. Second, the Bradford transform is
being considered for standardization (CIECAT). Perhaps one
can do better than Bradford? Third, sharp sensors have been
discovered in many different psychophysical studies so it
seems entirely plausible that sharp sensors are used in color
vision. Yet, to the authors’ knowledge, the appearance of the
Bradford sensors is unique to Lam’s original study. Sharp
sensors also have the advantage that they are close to
sRGB21 color matching curves. So basing adaptation on
sharp sensors meshes well with standard color correction
methods used in digital color cameras.

In writing this article, we are not in anyway trying to
invalidate the Bradford transform. Rather, we want to draw
attention to the fact that the optimality of the Bradford color
space for chromatic adaptation has never been experimentally
proven. While it is clear that the Bradford sensors perform
better than cone space, they perform no better than sharp
sensors. This said, it is our opinion that the standardization
of the Bradford transform is premature.
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