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Abstract

For a fixed illuminant and observer there is a whole set
of reflectances resulting in an identical response, these re-
flectances are called metamers. It can be shown analyti-
cally that all reflectances in each such set must intersect at
least three times.

There is a large amount of literature arguing about the
properties of these sets, in particular about the position and
number of nodes of intersections. The results in the litera-
ture, based on relatively small data sets, vary in particular
as a consequence of different methods used for generating
metamers.

Using a new method based on statistical information
from measured sets, metamer sets are generated. These
infinite metamer sets are then studied for their inner struc-
ture in terms of cross-over behavior. The results presented
here confirm the result of there being three major wave-
lengths of intersection. These are around 450nm, 540nm
and 610nm.

1. Introduction

The human visual system is sensitive to the wavelength
range of 400nm to 700nm. However, it is more or less
sensitive to different wavelength regions within this range.
Many studies have shown that there is particularly high
sensitivity to small wavelength intervals centered around
450nm, 540nm and 610nm. More generally, these special
or “prime” wavelength intervals are known to have a num-
ber of important properties:

Monitor Gamut Monitors equipped with primaries that
peak sharply at around 450nm, 540nm and 610nm have
been shown to have maximally large gamuts[3].

Sensor sharpening Linear combinations of the cone
sensitivities that are “sharpest”, peak at around 450nm,
540nm and 610nm. These sharp sensors have been shown
to simplify colour—constancy and other image analysis tasks
[3]. Moreover, the Bradford curves, used in CIE’s colour
appearance model CIECAM97s (which were designed to
optimise the ability of the von Kries transformation to mod-
el illuminant change) peak around the same wavelengths.

Metamerism If a color input device’s sensitivities are
very narrow (in the limiting case have support only at a
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single wavelength) then it is easy to show that device me-
tamers (spectral stimuli that induce the same device re-
sponse) necessarily cross at the sensor wavelength posi-
tions. In terms of the position and frequency of crossover
wavelengths of metamers for the human visual system, it is
found that metamers tend to cross at around 450nm, 540n-
m and 610nm. We would expect this result if the human vi-
sual system sampled spectra in the same way as a narrow-
band sensor device that only had sensitivities located at
these wavelengths. Indeed, this is the case for a large cor-
pus of real lights and real reflectances[9].

Printing If the spectral reflectances of printed inks have
high reflectivity in the prime—wavelengths (and less out-
side these ranges) then illumination change for a print sam-
ple viewed under a pair of lights would adhere to the von
Kries law (assuming sharp sensors anchored in the prime
wavelength intervals). That is, choosing ink sets that en-
force such reflectance profiles helps prevent metameric ef-
fects due to illuminant change. Most dye sets naturally
enforce these kinds of reflectance profiles.

The size of the monitor gamut and the efficacy of spec-
tral sharpened sensors to deliver von Kries adaptation are
well established through rigorous mathematical proof. The
debate about crossover wavelengths is in reality less con-
clusive. While the propensity of data over various studies
indicate that crossover points tend to appear at the prime
wavelengths, other authors have pointed out that metamers
need not cross at these wavelengths [17]. One can syn-
thesise metamers that only have crossover wavelengths at
anti-prime wavelengths. That this is so is quite an impor-
tant study. It is well known that the human eye can see
thousands and thousands of distinct colour stimuli. Yet,
traditional studies of metamers involve a small number of
reflectances. Small enough that the loci of crossover wave-
lengths cannot, with any reasonable statistical significance,
be thought to extrapolate to large data sets. On top of
this problem is the fact that many antecedent studies are
based on putatively “reasonable” metamers. In particular
they are usually constructed by a linear combination of a
smooth metamer basis. While it is true that most real re-
flectances are smooth, there is no guarantee that a mathe-
matical construction of reflectances, that implements this
intuition, has any basis in nature.
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In this paper we tackle both these problems head on.
First, we look at the statistics of real reflectances and con-
sider the circumstances through which nature might gene-
rate metamers. In particular a collage of n reflectances
viewed from a far enough distance generates a single new
aggregate reflectance. By averaging in this way (in fact by
taking convex combinations of real reflectances) we can
generate an infinite set of real reflectances. Many of these
reflectances will induce the same device response under
given lighting conditions, so the collage idea allows us to
generate infinite metamer sets. These infinite sets are pred-
icated only on the statistics of real natural reflectances. At
a second stage we introduce methods for quantifying the
cardinality of the set of infinite metamers which cross over
at particular wavelengths.

Our analysis is performed for a number of illuminants
and reflectance data sets. In all cases we observe that there
are three distinct places in the visible spectrum where the
infinite, statistically plausible metamers tend to cross —
crossovers statistically are found only around the prime
wavelengths: 450nm, 540nm and 610nm. Our results serve
to strengthen previous studies on metamer crossovers and
more generally lend support for the theory that prime wave-
lengths are fundamental to the understanding of colour vi-
sion and colour imaging.

In the following section previous work in the area of
metamer crossovers is reviewed and limitations and prob-
lems with the approaches are pointed out. Section 3 presents
the new infinite metamer approach. Experimental results
are discussed in section 4.

2. Metamer Crossovers

Two spectrally different reflectances resulting in an identi-
cal response under a given illuminant are metamers. The
necessarily convex set of all such reflectances is called the
metamer set.

Early work in the study of metamers, has showed that
for two reflectances to be metameric to the human visual
system, they need to cross at least three times across the
visible spectrum [19]. The position of these crossovers has
been the source of much subsequent discussion and debate.

For smooth metamer pairs, Thornton [20] found that
there are three statistically significant intervals of cross-
overs: 448nm 4 4nm, 537nm =+ 3nm and 612nm + 8n-
m. He concluded that these three narrow band wavelength
ranges correspond to the human visual system’s peak sen-
sitivity areas and he labeled them prime wavelengths.

Ohta and Wyszecki [17] questioned the necessity of
these three particular wavelength ranges, and using nume-
rical methods they produced two sets of pairs of metamers
which reproduced Thornton’s findings to a lesser degree.

Other works [2, 16, 1] studied the crossover problem
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from different perspectives (crossovers for a varying meta-
merism index, crossover behavior of the statistically most
important illuminant, etc.), and concluded that for natural
reflectances it is indeed the case that they cross at the prime
wavelengths.

At first glance then, taken together, these studies ap-
parently suggest that metamers should cross over around
the prime wavelengths. Unfortunately, few of the above
studies are statistically significant enough to really speak
about general properties of metamers. First, previous stu-
dies are based only on a small number of metamers. More-
over, for a given color response (XYZ) usually only a small
number of metamers are considered (in fact in most studies
a single pair). Perhaps more serious than these problems
is the fact that metamers were generated synthetically and
so need say nothing about typical metamers encountered
in the real world.

Some of these concerns were addressed in a recent
work by the authors [11] that developed a numerical proce-
dure for generating large numbers of statistically plausible
metamers for a given device response.

2.1. Generating Natural Metamers

Let us assume that continuous spectra might be represent-
ed by sample values at a discrete number of sampling wave-
lengths (in fact by values at 400nm through 700nm at a
10nm sampling distance). It follows that 31-vectors r and
e can be used to represent surface spectral reflectance and
illumination spectral power distribution. The 31 x 3 matrix
X denotes the three CIE XYZ color matching functions
(one function per column). Now, for flat, Lambertian sur-
faces illuminated by a diffuse illuminant of known spectral
power distribution, the CIE tristimulus values can be cal-
culated using the following matrix equation:

rTD(e)X = xT (1)

where D() is an operator mapping elements of a vector in-
to the diagonal elements of a matrix, and 7 is the transpose
operator.

A given x may be induced by many r-s. If we think
of r as an unknown to be solved for in eq. (1) we come to
understand this observation in more detail. The right-hand
side of (1) contains 3 knowns but we are trying to solve
for the 31 unknowns on the left-hand side. Clearly there
is no unique solution to this problem. In fact Cohen and
Kappauf have shown that there is a 28 dimensional space
of solutions [5, 6, 7].

However, in practice real reflectances inhabit only a
small part of 31-dimensional vector space. Indeed, using
techniques such as characteristic vector analysis it is possi-
ble to find a small number of basis vectors (between 3 and
6), which suffice to model variation in measured reflectan-
ce data [18, 8, 13, 15]. Not only do such analyses help us
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represent reflectances more concisely but it is of consider-
able import when we come to look at metamerism.

Let us suppose we have m basis vectors b collected
in a matrix B. Letr = o1by + o2bs + ... + 0mmbm
(reflectance is uniquely defined by the o weights). Now
we can rewrite eq. (1) by substituting r = Bo:

c"BTD(e)X =xT 2)
Equation (2) represents 3 equations of /m unknowns (the o
vector). It is easy to show that the set of solutions to eq. (2)
is m — 3 dimensional. Notice if m = 3 then the solution
is 0 dimensional: i.e. there is a single point solution [14].
Indeed, we expect this to be the case since BT D(e)X is a
3 X 3 matrix which has a unique inverse.

Let us now consider how eq. (2) might be solved for
the case of m > 3. This set of linear equations can now be
solved by decomposing the solution into a sum of two par-
tial solutions [12]. Without loss of generality let us assume
that the first 3 rows of BT D(e)X are non zero and the last
(m-3) rows equal zero. That is the human visual system,
given illuminant e, can only “see” the first three basis fun-
ctions — the human visual system is orthogonal to the last
m — 3 basis functions. Now it is easy to find a particular
solution: we simply find the linear combination of by, by
and bg that induces the required tristimulus. The second
part is a solution involving the remaining m — 3 basis fun-
ctions. By definition, the visual response to b; (i > 3) is
zero. Each such b; is called a metameric black. It is also
apparent that if b; and b; induce a zero response then so
does ab; + Bbj (visual response is linear). It follows that
the general set of all metamers have the form: particular
solution plus any linear combination of metameric blacks
[10].

Of course the fact that we might add metameric blacks
together and then add this sum to the particular solution
does not mean that we end up with plausible reflectances.
Clearly, in forming metamers there are constraints that we
must enforce. Reflectances are non-negative (no less than
no light is reflected) and less than or equal to one (no more
than all light is reflected). There are further constraints that
apply to the individual basis functions. These can be deter-
mined experimentally i.e. for a corpus of real reflectances
we determine the range within which the factors applied to
the basis functions must fall.

Both the physical (bigger than or equal to 0% less than
or equal to 100%) and statistical weight constraints are lin-
ear inequalities. It follows that for a given tristimulus value
(for which we wish to generate metamers) we can use lin-
ear programming [4] to find a region of weight space, ac-
tually a hyper-rectangle, in which metamers must lie. By
sampling this hyper-rectangle we can generate an arbitrar-
ily large number of metamers.

In a study [11] we took a number of reflectance sets,
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projected them to XYZ tristimulus values, and using a ba-
sis derived from the same reflectance set, we recovered
metamer set approximations using the above method. For
each set we then examined the crossover behavior of the
samples within the set, and we arrived again at three prime
peaks around 450nm, 540nm and 610nm — the prime wave-
lengths. This approach represented a significant improve-
ment over previous studies. A large number (thousands) of
metamers were generated and all of these were physically
plausible. However, the approach was not perfect. The
fact that metamers were generated through sampling was
unsatisfactory. How many samples are necessary? Did the
sampling strategy bias the crossover results to favor one
wavelength over another?

In order to address these issues we set out to solve for
the analytic solution of the number of crossover metamers
as a function of wavelength.

3. Infinite Natural Metamer Sets

Linear inequalities, which define our metamer set, can be
viewed as a set of half-spaces (they are linear divides that
split reflectance space into two parts). Taken together a
set of linear inequalities describes a volume (a convex re-
gion of reflectance space). Given linear inequalities de-
scribing the set of all real reflectances (this defines a con-
vex set in weight space), and the set of all signals inducing
a given XYZ tristimuli (an affine plane in weight space)
we can solve for the metamer set by intersecting these
two geometric bodies. The result is a closed convex re-
gion of weight space. Relative to this metamer set we
wish to count the number of metamers that crossover at
a given wavelength. The notion of crossovers can also be
expressed as linear inequalities (and so by hyper-planes).
However, care must be taken here. The hyper-plane that
describes a crossover point for an increasing function is
different from the hyper-plane for a decreasing function.
Each hyper-plane must be intersected with the metamer set
separately. The sum of volumes for the two intersections
returns a volume proportional to the cardinality of the me-
tamer set that has a particular crossover wavelength.

As we are interested in the histogram of metamer inter-
sections, we go sequentially through all wavelengths of the
visible range and find the corresponding sub-set of the me-
tamer set which represents metamers crossing at the par-
ticular wavelength. This approach gives us the freedom to
get precise results, to use a sampling of the visible range
as fine as we need, to avoid sampling the convex hull of
weights of the metamer set and to arrive at an infinite set
of metamers. It is also much faster to arrive at this analytic
result than to run the sampling algorithm.

Those readers familiar with notions of convexity, hyper-
planes and geometric calculations — convex set intersection
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and convex hull computation — will realise that the pro-
gram for determining the cardinality of infinite metamer
sets (of reflectances with the same crossover point) is quite
non-trivial. The main bulk of our code is written in around
120 lines in Matlab and we make external calls to the Qhull

algorithm (available at www.geom.umn.edu/software/qghull/).

The interested reader is encouraged to contact us for more
details.

4. Results

A number of reflectance sets were taken as a basis for the
experiments. These were a set of 462 Munsell colour chips
[18], a set of 170 object reflectances[21] and a set of 120
DuPont colour chips. The convex hull of the tristimuli of
each of these sets is calculated and consequently sampled
using a uniform, tetrahedral, sampling so as to arrive at
approximately 400 points inside the hull.

For each tristimulus value the convex hull of it’s me-
tamer set is calculated and intersected sequentially by the
half-spaces defining a crossover at each wavelength in the
visible range, at a 10nm sampling. The intersection’s vol-
ume is calculated and used as a representation of the frac-
tion of the convex hull which corresponds to metamers in-
tersecting at a particular wavelength. The final histogram
is then the sum of all histograms of the interior points of
the convex set of tristimuli.

Each experiment was carried out for illuminants D65,
A and TL84 (fluorescent) and 6 basis vectors were used to
represent the reflectances, as this basis covered over 99%
of variance in each studied set.

The results are strikingly clear, and for all illuminants
and data sets three distinct peaks are clearly present, all of
which are around the prime wavelengths 450nm, 540nm
and 610nm.
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Figure 1: Metamer crossover histograms for illuminant D65

(from top to bottom: the Munsell data set, the Object data set
and the DuPont data set).
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Figure 2: Metamer crossover histograms for illuminant A (from
top to bottom: the Munsell data set, the Object data set and the
DuPont data set).

Figure 3: Metamer crossover histograms for illuminant TL84
(from top to bottom: the Munsell data set, the Object data set
and the DuPont data set).



