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Abstract

A method for estimating the best gamma value for an RGB
image is described. The algorithm is intended to be part of a
larger image enhancement system. It first quantizes the
image colors into a small palette and then finds the gamma
that distributes the palette colors most evenly in a modeled
perceptual lightness scale, which adapts to the overall image
luminance. The algorithm was tested both against gammas
assumed to be correct and subjectively optimal gammas. The
estimated gamma offers no statistical advantage when a
reliable correct gamma is known, but when one is not
available, the algorithm can be used to select gammas that
correlate with the subjective optimum to a degree
comparable to differences between individual subjects.

Introduction

A fundamental part of most applications where RGB images
are used is the definition of the gamma value. In this paper,
gamma means the exponent of the power function describing
the transformation from RGB signal to intensity, i.e. larger
gamma implies darker appearance. Wrong gamma may
result in a poor contrast and color balance as well as a wrong
overall lightness level. Moreover, it is very difficult to
correct these deficiencies with other color adjustments. Thus
it is very important to initially select the right gamma for all
images. If this value is not known, it cannot be presumed
that any logically chosen default value (such as 2.2) would
give good results regardless of image type and origin.

Gamma selection has been an important step in the
automatic color image enhancement algorithms developed at
the Helsinki University of Technology (HUT) in the recent
past.1 This paper discusses the latest gamma selection
algorithm developed at HUT. The primary goal of this
algorithm is to find appropriate gamma for images coming
from different sources (e.g. 2.2 for “PC-images”, 1.8 for
“Mac-images”, 1.0 for certain scanners used in graphic arts
applications etc.). In addition, gamma (together with other
adjustments) is used as a general adjustment tool, which may
be needed even when a predefined gamma value is known.

In this paper all the tests were made using CRT monitor
images. The gamma algorithm can, however, be used for
other types of images too. It is planned to be the first step in
automatic color enhancement procedures which may or may
not include output device dependent color adjustments.

Selection of Gamma

The basic idea of the gamma algorithm is the same as in
histogram equalization: to distribute lightness levels evenly
between black and white. Instead of accepting general
transformations in color space, the transformation is
constrained to gamma correction, and the gamma value is
sought which gives the most even distribution. Besides this
constraint, there are two essential differences compared to
basic histogram equalization. First, instead of using the
histogram, the RGB image is converted to an indexed image
with few colors and those colors are distributed evenly.
Second, the lightness is expressed in a perceptually uniform
scale, which adapts to the overall brightness of the image.
Hence the selected gamma may be different for images with
the same color palette but with different frequencies for the
colors. Similar adaptation schemes have been used in the
context of grayscale histogram modification.2

Palette Generation
A well-known drawback of simple histogram

equalization is over-enhancement of contrast in spatially
smooth regions. As an example, for images with a distinct
object against a smooth background, the equalization is
affected very much by the size of the background. Using a
color palette, we assume we can give the image colors
visually more relevant weights than by using a histogram.
The method used for the indexed image creation is a
clustering algorithm that first generates quantization centers
in the color space, then classifies each pixel according to the
nearest-neighbor rule. The partition of the color space thus
defined is not necessarily equiprobable. This is the essential
advantage over histogram equalization; it means that even
large smooth regions are usually represented by just a few
colors, whose weight in gamma optimization is the same as
the weight of other colors.
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Modeling of Perceived Lightness
Although the color palette is a much better basis for

gamma selection than a histogram, it is not sufficiently
adaptive to the image content. To improve the method, some
kind of adaption scheme is needed. Unfortunately, the
restrictions of current color science and the need for a
relatively simple, computationally efficient solution, mean
that image dependent perceived lightness can only be
estimated with very limited exactness. This does not,
however, mean that image content should be ignored
completely.

Tests with different photographic color images showed
that the average lightness level of the darkest images was
about 10 CIE L* units while the level of the lightest images
was 80. When small patches of different shades of gray were
placed on a dark and a light image the lightness difference
∆L* between patches producing the same visual perception
could easily exceed 40. This result encouraged efforts to find
a simple method that would at least partially take into
account the image content when measures of lightness are
calculated. The approach chosen was based on the empirical
fact that visual effects of simple uniform backgrounds can
be predicted relatively accurately. An assumption was made
that a color image affects the perception of its colors in
roughly the same way as would a uniform background with
the average color of the image. Furthermore, it was assumed
that if this is the case, using the average color of an image as
the adaptive reference would be beneficial when estimating
perceived lightness.

In practice, the key question is, how much the accuracy
of this assumption is affected by the image content of
normal photographic images (how badly it fails?). This was
tested visually by comparing small gray objects (less than
two degrees; the same shape and size but varied tone) placed
on corresponding locations of a selected color image and a
uniform background having the average color of the image.

Visual comparison showed that the lightness difference
∆L* between patches with the same visual appearance was
usually relatively small. This difference was naturally
dependent on the image and the image location. In
exceptional cases, at some lightness levels and image
locations, ∆L* exceeded 20 but for most images and
locations the differences were much smaller. Regardless of
the lightness level tested ∆L* of 5 was rarely surpassed and
typical ∆L* values were at an acceptable level of two or
even lower.

These results suggested that using image dependent
average color as adaptive reference when estimating
perceived lightness is not an accurate but nevertheless a
useful approach in practical applications where simplicity
and computational efficiency are important.

This adaptation scheme proved to be particularly
beneficial in cases of inherently dark images whose gamma
values tended to be too small otherwise.

Given a gamma value γ, the lightness is defined as
follows. First, the Y tristimulus value of an RGB color is
calculated, assuming sRGB primaries:

Y = 0.2126 R γ + 0.7152 G γ + 0.0722 B γ (1)

Then, a nonlinearity similar to the CIELAB or CIELUV
color spaces is applied:

L = f (Y / Ya) / f (Yref / Ya) , where Yref = 1 and
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The parameters p and fb are fixed and determine the general
form of the function: p is the inverse exponent and fb is the
endpoint value of the linear portion near black (for CIE L*,
p = 3 and fb = 8). The Ya adaptation parameter is related to
the average Y value of the image. We have used the simple
relation

Y Y ba ave= / (3)

where b is a constant smaller than unity. When Yave increases,
function f becomes less nonlinear. This has the effect of
shifting the emphasis in lightness differences from the dark
end towards the bright end, which forces the algorithm to
select a smaller gamma. The division by f(Yref/Ya) normalizes
the lightness into [0, 1]. It is the short linear portion that
makes the normalized L vs. Y curves dependent on the
adaptation. If f were just a power function, the normalization
would cancel the adaptation effect completely.

This method in its present form is mainly a
mathematical trick having an effect in the right direction.
Anyway, its similarity to visual phenomena, as modeled e.g.
by CIECAM, gives it some additional justification. We have
also tested a CIECAM97s based version and obtained
comparable results.

Dynamic Range Normalization
If the RGB range of the image does not extend to the

maximum available signal value due to underexposure or
similar reason, equalizing the original colors would often
result in a small gamma. Therefore, the algorithm does not
use original RGB values in (1) but scales them by a dynamic
range estimate RGBmax:

( , , ) ( , , ) /R G B R G B RGBorig orig orig max= (4)

The Algorithm
The entire algorithm consists of the following stages:

1. As preprocessing steps, downsample the RGB image if
it is very large, then process it with a nonlinear filter to
remove noise and small details.

2. Generate an RGB color palette with a clustering
algorithm and compute the pixel counts for the palette
colors. Let the palette size be M, and let the color
vectors be denoted by ci and the counts by Ni,
i = 1, ..., M.

The Seventh Color Imaging Conference: Color Science, Systems, and Applications

2

The Seventh Color Imaging Conference: Color Science, Systems, and Applications

302

The Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T



3. Find a dynamic range estimate RGBmax from the image
histograms. Scale the palette colors using (4).

4. Divide the normalized lightness interval [0, 1] into M
parts of equal length and take their centers as target
lightnesses Lt

1, ..., L
t

M, where Lt

1 is the smallest lightness
etc.

5. Repeat for γ = γmin to γmax:
5a. Get the Y components of the ci using (1). Denote these

by Yi.
5b. Compute Yave as the weighted mean of Yi, using weights

Ni. This is approximately the same as the average Y
over all pixels. Define the adaptation level according to
(3).

5c. Get the visual lightness values Li using (2).
5d. Sort the Li. For each k = 1, ..., M, let i(k) be the index of

the palette color whose lightness is the kth smallest.
Calculate the sum of squared errors between the actual
and the target lightnesses:

( )e L Lt
k i k

k

M

( ) ( )γ = −
=

∑ 2

1

(5)

6. Select the gamma for which the error is smallest:

γ γγopt e= arg min ( ) (6)

Invariance Properties

A desirable property of a gamma selection algorithm is
invariance to changes in target gamma. In other words, the
automatically selected gamma should vary with the image in
a way that cancels gamma corrections. If an image I1 is
transformed into I2 by raising its pixel values to the power of
γ, and if γ1 and γ2 are the optimal gammas selected by the
algorithm for I1 and I2, respectively, then it should hold:
γ2 = γ1/γ.

The invariance holds exactly if the indexed image does
not depend on gamma, and if the palette colors follow the
same gamma transform as the image itself. This is true for
ideal images consisting of only a small number of objects
with constant and sufficiently distinct colors, as long as the
gamma stays within certain limits. Therefore, the invariance
is expected to hold well for real images whose color
distribution is very strongly concentrated into a small
number of clusters. To be gamma invariant in general, the
algorithm should optimize some criterion that is a function
of the whole image, not just of the color palette. This would
imply higher computational complexity, so the palette
approach was adopted as a compromise.

Under the above ideal assumptions the algorithm is, due
to the RGB normalization (4), also invariant to linear scaling
of RGB values. That is, the same gamma is selected for I1

and I2 if I2 = a I1 with a constant. For real images, this
invariance is only approximate because the palette
generation uses the original unnormalized image.

Results

To test the algorithm, we selected 300 pictures portraying
various subjects, including people, landscapes, buildings,
interiors, nature, close-ups of objects, etc. Different times of
year and day were represented. The pictures were on Kodak
Photo CDs, from which they were read into Adobe
Photoshop in CIELAB format. The pictures were converted
to RGB using Photoshop settings that corresponded to the
sRGB space except in the gamma, which was varied so that
several gamma versions could be generated from the same
picture. The gamma values used were 1.0, 1.4, 1.8, and 2.2.

The picture set was divided into 100 training pictures
and 200 test pictures. The test set had not been used
previously during development of the algorithm.

Estimated Gamma Versus Assumed Gamma
The algorithm was first tested against assumed target

gammas. To optimize the parameters, all four gamma
versions of each training picture were generated.
Preliminary tests with some parameter combinations had
showed that several combinations led to statistically similar
results. Therefore, in the tests described here, parameters p
and b in Eqs. (2) and (3) were fixed at the values 3 and 0.3,
respectively, and only fb was varied. The root-mean-square
error for all 400 training images between the logarithms of
the estimated and the assumed gammas was computed with
different values of fb. The optimal value of fb was found to be
12. In all subsequent comparisons, as well as above, the
logarithm of the gamma rather than the gamma itself is used
because the log scale is visually more uniform and because,
due to the invariance property discussed above, variation in
the estimated gamma is expected to be proportional to the
average gamma.

The linear portion of the resulting lightness function is
somewhat longer than that of the CIELAB curve, causing
the curves to depend more on the adaptation parameter Ya.
Figure 1 shows examples of the resulting curves with
different adaptation parameters.

Four gamma versions of the test images were also
generated as above and the algorithm was run for this set,
whose total size is 800. Table 1 contains some statistics on
the results both for the training and the test images and for
each fixed reference gamma. The overall RMS error in the
natural logarithm domain is also shown in the table for the
training and test sets. For example, the log-domain error
value 0.27 corresponds to a multiplicative error of
exp(0.27) = 1.31 in the gamma domain.
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Figure 1. Model of Eqs. (2) and (3) for perceptual lightness vs. Y
component at different adaptation levels. Lower curve: Y

ave
 = 0.4.

Upper curve: Y
ave

 = 0.05.

Table 1. Comparison of algorithm results with reference
gammas.
Reference gamma 1.0 1.4 1.8 2.2 All
Mean (training set) 1.23 1.49 1.78 2.01
Coef. of variation (training
set)

0.25 0.28 0.29 0.29

RMS error in log domain
(training set)

0.29 0.24 0.24 0.28 0.26

Mean (test set) 1.20 1.47 1.76 2.01
Coef. of variation (test set) 0.26 0.28 0.29 0.29
RMS error in log domain (test
set)

0.28 0.25 0.26 0.29 0.27

Table 2. Behavior of algorithm results as the gamma is
varied. Note that the geometric mean of the ratio is
equivalent to the mean difference in log domain.
Reference gamma 1 1.0 1.4 1.8 1.0 1.4 1.0
Reference gamma 2 1.4 1.8 2.2 1.8 2.2 2.2
Expected γ2 / γ1 1.40 1.29 1.22 1.80 1.57 2.20
Geom. mean of γ2 / γ1

(training set)
1.21 1.19 1.13 1.44 1.35 1.62

Correlation between γ2

and γ1 in log domain
(training set)

0.90 0.95 0.96 0.81 0.91 0.75

Geom. mean of γ2 / γ1

(test set)
1.22 1.20 1.14 1.46 1.37 1.67

Correlation between γ2

and γ1 in log domain (test
set)

0.94 0.97 0.96 0.91 0.93 0.85

Table 2 describes the behavior of the algorithm for
different versions of the same image. For example, when the
reference gamma changes from 1.4 to 2.2, the result should
change by a constant ratio of 2.2 / 1.4 = 1.57 in the ideal
case. In reality, the average ratio is somewhat smaller (1.35).
The correlation coefficient between the two estimated
gammas is rather high (0.91 to 0.93). In other words, despite
the fairly large variance in the estimated gammas, the
estimation result mostly changes consistently with the
reference gamma when versions of the same picture are
compared, i.e. the invariance holds with reasonable
accuracy.

Estimated Gamma Versus Visual Optimum
The ultimate performance criterion of the gamma

algorithm is how it contributes to improving the visual
quality of pictures. This was studied with subjective testing.
To make the tests practical, they were conducted in three
sessions using 100 pictures in each: the training set
comprised one part and the test set was divided into two
equally large subsets. Only one gamma version of each
picture was chosen for the tests randomly, but in such a way
that there was an equal number of samples (25) from each
reference gamma within each of the three subsets.

During a test session, the 100 images were displayed on
a monitor in random order. The subject could adjust the
image appearance with a slider that controlled the gamma,
and he or she was asked to set the slider at the optimum
position. The picture was displayed in grayscale instead of
color. This was considered the most appropriate method
because the algorithm tries to optimize lightness only,
without regard to saturation or color balance. Prior tests had
suggested that since visual colorfulness usually increases as
gamma increases, the optimal gamma tends to be higher in
the presence of color information, leading to too dark images
compared with the case where there is no color information.
Testing of the algorithm without color was justifiable
because the algorithm was not intended to be executed in
isolation, but rather was designed to be accompanied by a
saturation adjustment, which can compensate for the lack of
saturation resulting from smaller gammas. By omitting
color, we also eliminated some ‘feel’ aspects of the image
which can affect the optimal gamma. Since we cannot
expect an algorithm as simple as this to recognize such
effects, eliminating them can even be considered
advantageous for testing purposes.

For the visual optima to be comparable to the estimated
gammas, the dynamic range normalization (4) was also
applied to the displayed images. Given a gamma value
determined by the position of the slider, the test program
calculated the Y tristimulus component of the color image
using this gamma and converted it into a monitor-corrected
grayscale image using a measured tone reproduction curve.
The gamma scale represented by the slider consisted of
discrete steps that were equally spaced in the log domain.
The initial slider position was chosen at random for each
image.
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Each of the three tests was executed twice by three
subjects. One subject was one of the authors, but the other
two had no background in color image processing.

When examining the results, we must consider the
possibility of a systematic difference occurring between the
subjectively optimal gamma and the assumed gamma, due to
viewing conditions or monitor calibration error. This
difference was checked for the training images and was
found to correspond to a relative gamma of about 1.03.
Since this value is close to unity it was ignored, and the
subjective gammas were used in the comparisons directly
without any correction.

Table 3 shows the results of comparisons between the
assumed, estimated, and subjective gammas for the test set.
We employed a simple RMS criterion, which does not take
into account the fact that the limits for visually acceptable
gamma can be looser for some images than for others.
Although the small number of subjects and the restricted set
of images do not allow us to draw statistically reliable
conclusions, the following observations can be made from
the table data. First, the difference between the assumed and
subjective gammas is rather large, even for the average
subject. This suggests that the assumed gamma is not a very
good basis for studying algorithm performance. Second, the
estimated gamma is closer to the subjective gamma than to
the assumed gamma. Thus, the fairly large variation in Table
1 can be partly explained by the fact that the assumed
gamma is not visually optimal for all images. Third, there
are significant differences between two subjects which can
be of the same order as the error between the estimated and
subjective gammas.

In Figure 2, examples of the correlation between the
computed and subjective gammas as well as between two
subjects are displayed graphically.

Table 3. Comparison between assumed, estimated, and
subjective gammas for the test set (200 images). The
values in the last column are exponent functions of those
in the middle column. The results for individual subjects
are averages of the two test sessions.

RMS diff.
in log
domain

Difference in
multiplicative
form

Estimated / Assumed 0.28 1.33
Estimated / Average subject 0.20 1.22
Estimated / Subject JK 0.23 1.26
Estimated / Subject MS 0.23 1.26
Estimated / Subject SV 0.22 1.25
Assumed / Average subject 0.19 1.21
Assumed / Subject JK 0.22 1.24
Assumed / Subject MS 0.23 1.26
Assumed / Subject SV 0.21 1.23
Subject JK / Subject MS 0.21 1.24
Subject MS / Subject SV 0.18 1.19
Subject SV / Subject JK 0.16 1.17
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Figure 2. Log-scale comparison of estimated and subjectively
optimal gammas for the test set. Note that some circles may

represent several overlapping points.

Further Development of Gamma Algorithms

Although the performance of the algorithm in conjunction
with other corrections is still an open question, the present
version is evidently too simple for certain cases. For
example, optimization of just the lightness component
causes over-enhancement in regions having roughly constant
lightness but varying color, since such regions are
represented by several palette colors. The outlier point in the
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upper left region of Fig. 2 (a) is such a case. Also, the
adaptation to overall brightness is not quite adequate.

Usually, there exists a priori knowledge of the gamma
lying between, say, 1.0 and 2.5. If additional gamma
selection criteria, such as saturation, are used, they should be
designed so as to counterbalance the lightness criterion in a
manner that forces the optimum to be within the correct
range.

The algorithm described above does not use spatial
information, except for the small effect of the pre-filtering.
Actually, the method was designed to be a preprocessing
stage of a larger automatic image processing system whose
aim is to utilize spatial information as well. The result of
spatial segmentation corresponds to actual objects and
backgrounds even better than palette colors do, so the
gamma algorithm is expected to be improved if it is
modified to exploit segment information, possibly with a
more accurate model of perceived lightness.

The gamma, although very useful, is not the only
parameter for color image enhancement. To find the best
color reproduction, several parameters should be optimized
at the same time. Of course, when the number of variables
grows, it becomes more difficult to define an objective
function whose optimum at least roughly corresponds to
visual optimum. Nevertheless, the color palette approach
could lend itself to somewhat more complex color
adjustments as well. If the optimization involves iterative

evaluation of global color properties, these can be
approximated using the palette colors and their frequencies
without the need to scan the image pixels repeatedly.
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