
The Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T
Color Constancy with Fluorescent Surfaces
Kobus Barnard

School of Computing Science,
 Simon Fraser University

Burnaby, British Columbia, Canada
kobus@cs.sfu.ca
 b
au
n
e
n
o
i
 

It 
 
u
e
T

o
s

na
he
 

th
th

t
e
s
at
ha
o
ca
e
 
l

m
s
y 
t
e
n

ing
, and
and
uite

the
se is
ey

 the
gths
 as
 can
y a
on-
nt.

his
ily
for

 the
nts
 also
put

 the
 the
 is
least
the
en
the
mple
cent
ctra
en
 is
te
 by

 the
ods
Abstract

Fluorescent surfaces are common  in the modern world,
they present problems for machine color constancy bec
fluorescent reflection typically violates the assumptio
needed by most algorithms. The complexity of fluoresc
reflection is likely one of the reasons why fluoresce
surfaces have escaped the attention of computational c
constancy researchers. In this paper we take some  in
steps to rectify this omission. We begin by introducing
simple method for characterizing fluorescent surfaces. 
based on direct measurements, and thus has low error
avoids the need to develop a comprehensive and acc
physical model. We then modify and extend several mod
color constancy algorithms to address fluorescence. 
algorithms considered are CRULE and derivatives,1-4 Color
by Correlation,5 and neural net methods.6-8 Adding
fluorescence to Color by Correlation and neural net meth
is relatively straight forward, but CRULE require
modification so that its complete reliance on diago
models can be relaxed. We present results for both synt
and real image data for fluorescent capable versions
CRULE and Color by Correlation, and we compare 
results with the standard versions of these and o
algorithms.

Introduction

The image recorded by a camera depends on three fac
The physical content of the scene, the illumination incid
on the scene, and the characteristics of the camera. It i
goal of computational color constancy to identify, separ
or mitigate the effects of these factors. Doing so 
applications in computer vision and image reproducti
Here we address computational color constancy in the 
where fluorescent surfaces may be present in the sc
Such surfaces are common because fluorescent inks
often used to provide strong color. However, machine co
constancy research has not yet addressed the proble
fluorescent reflection, likely due to the difficultie
presented. Nonetheless, we feel that it is necessar
investigate this problem because some of the most effec
color constancy algorithms are sensitive to fluoresc
surfaces, and can have poor results when they are prese
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Characterizing Fluorescent Surfaces

We begin by introducing a simple method for characteriz
fluorescent surfaces. It is based on direct measurements
thus has low error and avoids the need to develop, fit, 
test physical models. Such models are necessarily q
complex and limited to the kinds of surfaces exhibiting 
processes being modeled (an elegant model for one ca
developed in [9]). We remind the reader that the k
characteristic of fluorescent surfaces is that some of
light energy they absorb is re-emitted at longer wavelen
(lower energy). If we represent the incident light spectra
a vector of samples over wavelength , then reflectance
be described by the multiplication of that input vector b
triangular matrix. This is much more complex than the n
fluorescent case where a diagonal matrix is sufficie
Although it is possible to measure this matrix, doing t
effectively requires equipment which is not read
available. Thus we introduce a more direct method 
obtaining the data required.

Given a fluorescent surface candidate, we measure
spectra of the reflected light under a number of illumina
using a Photoresearch PR-650 spectraradiometer. We
measure the spectra of the illuminants providing the in
energy to the fluorescent surface. Then, to simulate
surface under a new illuminant spectra, we first compute
positive linear combination of the test illuminants which
closest to the new illuminant spectra using constrained 
squares optimization. The reflected energy of 
fluorescent spectra under the new  illuminant is th
approximately that same linear combination applied to 
measured test response spectra set. A simple exa
should make this clear. Assume that when the fluores
surface is illuminated by a spectra A, the result is spe
A’, and similarly, let B’ be the response to stimulus B. Th
if a illuminant C is roughly A+2B, then the response, C’,
roughly A’+2B’. This procedure is used to simula
fluorescent reflection to obtain the data sets required
color constancy algorithms.

Color Constancy with Fluorescent Surfaces

We now turn to the algorithms themselves. We feel that
most effective computational color constancy meth
currently available are CRULE and derivatives,1-4 Color by
Correlation,5 and neural net methods.6-8 Adding fluorescence
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to Color by Correlation and neural net methods is relativ
straight forward. In either case, our characterization
fluorescent surfaces is used to augment the world use
training (neural nets) or building correlation matrices (Co
by Correlation).

Extending Forsyth’s CRULE method is more involve
This method explicitly assumes that an illumination cha
can be modeled by a diagonal transform. For example,
the camera response to a white surface changes from
Wg, Wb) to (Wr’, Wg’, Wb’) due to an illumination chang
then we assume that the illumination change for the o
(non-white) surfaces are modeled by multiplication by 
diagonal matrix formed from the vector (Wr’/Wr, Wg’/Wg
Wb’/Wb). The accuracy of this assumption in the no
fluorescent case has been well studied,10-13 and is known to
be strongly dependent on the camera sensors. The pro
is that the very nature of fluorescent reflection is contrar
this assumption. To deal with this we first propose
modification to Forsyth’s method which makes it mo
resilient to diagonal model failure. Once we make t
modification, incorporating fluorescent surfaces 
straightforward.

We will now provide some additional details of th
extension beginning with a brief review of Forsyth
method.1 First we form the set of all possible RGB due
surfaces in the world under a known, “canonic
illuminant. This set is convex and is represented by
convex hull. The set of all possible RGB under 
unknown illuminant is similarly represented by its conv
hull. Under the diagonal assumption of illumination chan
these two hulls are a unique diagonal mapping (a simple
stretch) of each other.

Figure 1 illustrates the situation using triangles 
represent the gamuts. In the full RGB version of 
algorithm, the gamuts are actually three dimensio
polytopes. The upper thicker triangle represents 
unknown gamut of the possible sensor responses unde
unknown illuminant, and the lower thicker triang
represents the known gamut of sensor responses unde
canonical illuminant. We seek the mapping between 
sets, but since the one set is not known, we estimate 
the observed sensor responses, which form a su
illustrated by the thinner triangle. Because the observed
is normally a proper subset, the mapping to the canonic
not unique, and Forsyth provides a method for effectiv
computing the set of  possible diagonal maps. (See [1-4
for more details on gamut mapping algorithms).

Once the set of possible maps has been compute
important second stage of the algorithm is to choos
solution from the feasible set. Several different methods
doing this lead to different variants of the algorithm.1,3,4,14

Another group of variants work in an appropria
chromaticity space rather than RGB.2 Finally, Finlayson
showed that it is possible to further constrain the solution
restricting the solutions to those corresponding to comm
or likely illuminants.2 We will make use of this extr
constraint in this study, and we will denote algorithms us
them as "extended" CRULE, or E-CRULE for short.
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The convex hull of 
measured RGB is 
taken as an 
approximation of the 
entire gamut under the 
unknown illuminant

The unknown gamut of all possible 
RGB under the unknown illuminant.

The known gamut of 
all possible RGB 
under the known, 
canonical  illuminant. 

Possible maps

Figure 1: Illustration of the basic idea of gamut mapping co
constancy.

We now consider the case where the diagonal mod
less appropriate. Here it may be possible that an obse
set of illuminants does not map into the canonical set wi
single diagonal transform. This corresponds to an em
solution set. In earlier work we forced a solution 
assuming that such null intersections were due 
measurement error, and we thus increased various 
estimates until a solution was found. However, this met
does not give very good results in the case of extre
diagonal failures, such as those due to fluorescent surfac

To deal with this problem, we propose the followi
modification. Consider the gamut of possible RGB unde
single test illuminant. Call this the test illuminant gam
Now consider the diagonal map which takes the RGB
white under the test illuminant to the RGB for white und
the canonical illuminant. If we apply that diagonal map
our test illuminant gamut, then we will get a convex 
similar to the canonical gamut, the degree of differe
reflecting the failure of the diagonal model. If we extend 
canonical gamut to include this mapping of the test set, 
there will always be a diagonal mapping from the obser
RGB of scenes under the test illuminant to the canon
gamut. We repeat this procedure over a representative s
illuminants to produce a canonical gamut which 
applicable to those illuminants as well as any con
combination of them. The basic idea is illustrated in Fig
2. Note that the test illuminant gamuts can inclu
8
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fluorescent surfaces modeled by the method described in
preceding section.

The gamuts of all possible RGB under three 
training illuminants.

Canonical 
 gamut

Mapped sets to 
canonical based on 
white. The maps
are not exact due to 
diagonal model 
failure.

Extended canonical gamut is the union of mapped
sets based on white using representative training 
illuminants

Figure 2: Illustration of the modification to the gamut mappin
method to enable the handling of fluorescent surfaces.

If the diagonal model holds fairly well, as is the ca
with non-fluorescent surfaces and our Sony DXC-930 vid
camera,3,13 then the canonical hull is extended slightly, a
under some conditions several variants give better res
than the same algorithms without the modificatio
especially as the number of available colors increases. I
model fluorescent surfaces, then the canonical gamut wil
extended a fair amount. In this case, the performance
data devoid of fluorescent surfaces is slightly degraded
the constraints on the solutions are less strict, but w
there are fluorescent surfaces the performance can
substantially better.

Experimental Results

As an initial step in our investigation of fluorescence 
measured a number of candidate surfaces, and trimmed
set down to 9 strongly fluorescent ones. These include
printed surfaces from a laundry detergent box, 2 surfa
from a multi-colored child's cloth ball, 2 different colors 
flagging tape, and 2 different vividly colored pieces 
paper. As described above, our method of characterizing
fluorescent surfaces required measuring their reflecta
spectra under a number of representative illuminants. 
3259
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non-fluorescent spectra we used a set of roughly 2
spectra collected from several sources.

The illuminant set for algorithm calibration (training
was carefully chosen in the following manner. We star
with 11 illuminants selected to cover, with relative
uniformity, the region of common natural and man ma
illuminants in the (R/(R+G+B), B/(R+G+B)) chromaticit
space. This set of 11 illuminants is also the one used for
image data. We then added additional measured illumina
and linear combinations thereof, to complete the unifo
coverage with higher density. This second set of illumina
included both additional common sources and 
illumination found in 90 random indoor and outdo
locations. The resultant set was used for the constructio
gamuts and correlation matrices, and thus played the ro
a training set. The illuminant set used for testing in the c
of generated data was constructed in the same manner
the chromaticity space was filled 4 times more densely.

Our camera was calibrated as described in [15]. 
used the resultant camera model for synthetic sc
generation, as well as the computation of the vario
"training" data sets mentioned above. Thus the sa
algorithm calibrations were used for both synthetic a
image data experiments.

For the purposes of this study, we will assume that 
goal of the algorithms is to estimate the response of 
vision system to a perfect white patch. However, it is of
the case that we are most interested in the chromaticit
the illuminant, and several of the algorithms of interest o
compute the illuminant chromaticity. Hence, we only rep
chromaticity results. The specific error metric us
considers the illuminant RGB and the correspond
estimate thereof as vectors in RGB space, and compute
angle between these two vectors in degrees.

We first present some results using generated data.
use of generated data eliminates calibration problems, 
simplifies analysis of the effects of statistical assumptio
We present the results of the various algorithms wh
subjected both to completely non-fluorescent data, as 
as a mix of fluorescent and non-fluorescent data. In e
case, 8 randomly chosen surfaces was used. For the se
case we arranged for the fluorescent surfaces to
represented roughly 30% of the time.

The results for generated data are shown in Table
The first conclusion is that the presence of fluoresc
surfaces does, as predicted, degrade every algorithm
designed to deal with them. On the other hand, 
extensions to gamut mapping and Color by Correlat
work well to reduce this performance degradation. T
reduction is most extreme with the extended Color 
Correlation method, but this is likely due in part to 
unnatural advantage that it does not enjoy in the case of
image data. Specifically, the second Color by Correlat
algorithm was trained on data statistically similar to the t
data. What is more promising is that the Color 
Correlation method trained with fluorescent surfaces wo
well on data devoid of such surfaces, fairing better than
gamut mapping algorithms in this regard. Finally, it shou
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also be noted that our gray world algorithm has acces
the actual average of our data base of non-fluores
surfaces, and thus has a unnatural advantage in the 
fluorescent case.

Table 1: Key to algorithms
ECRULE CRULE with illumination constraint
MV Solutions are chosen by max volume heuristic
AVE Solutions are the average over the feasible set
FL Algorithm is extended for fluorescence.
Retinex Estimate illuminant by the max RGB in each

channel.
Gray World Estimate illuminant color by image average
C-by-C Color by Correlation,5 with a Gaussian mask

to smooth the correlation matrix and
maximum likelihood estimate. For the FL-C-
by-C variant, an abundance of fluorescent
surfaces are included in the construction of
the correlation matrix

Neural Net Neural net trained to estimate illuminant
chromaticity based on the observed image
colors.6-8

Table 2: Average angular error in RGB space of
illuminant estimate (generated data)

No
Fluorescence

With 30%
Fluorescence

ECRULE-MV 6.2 9.9
ECRULE-AVE 6.7 9.1
FL-ECRULE-MV 8.2 7.1
FL-ECRULE-HA 9.6 7.7
Retinex 9.7 13.1
Gray World 6.7 12.0
C-by-C 5.9 10.6
FL-C-by-C 6.3 4.1
Neural Net 5.5 6.9

Table 3: Average angular error in RGB space of
illuminant estimate (image data)

Scenes without
fluorescent

surfaces

Scenes with
fluorescent

surfaces
ECRULE-MV 5.3 13.2
ECRULE-HA 6.2 10.7
FL-ECRULE-MV 6.4 10.7
FL-ECRULE-AVE 9.0 10.3
Retinex 7.8 18.0
Gray World 12.0 17.5
C-by-C 10.2 12.0
FL-C-by-C 10.0 11.7
Neural Net 9.8 11.4
4260
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We have also tested algorithms on real image data.
constructed 7 scenes which all included known or suspe
fluorescent surfaces, and took images of these unde
different illuminants, resulting in 77 images. Seven imag
were culled due to problems with the experiment, leavin
total of 70 input images. Again, we feel it necessary to lo
at the performance of the algorithms when fluoresc
surfaces are absent. Thus we also present the results fo
input images from 33 scenes which are relatively free
fluorescent surfaces. The dynamic range of all images 
extended using reduced illumination levels and averag
multiple frames. This gives us the opportunity to explo
color constancy in the context of a high dynamic ran
vision system, as well as more standard vision syste
which can be simulated by truncating the higher range d
The effect on the results is to give the Retinex ba
algorithm, and the maximum volume algorithms, 
advantage. This is especially true when there 
specularities.

In general, results from this real image da
demonstrate that modeling fluorescence is again benefi
although the large improvement in the case of Color 
Correlation has been reduced to quite a modest incre
This is likely due in part to the mismatch between t
statistics used for training and the somewhat arbitr
statistics in the image data. We also note that Color
Correlation has many possible implementations, and we
still working on finding a robust set of parameters for th
algorithm. In the case of the gamut mapping algorithms,
see that the performance on the real image data is exce
As noted above, the extended dynamic range of the d
enables the maximum volume algorithms to u
specularities, which are often present in real image data
illuminant chromaticity estimation. However, it i
interesting to note that the Retinex algorithm, which do
very well on the non-fluorescent data for the same reaso
badly degraded when used on the fluorescent data. The
ECRULE-MV algorithm on the other hand, handles bo
cases well, and is the overall top performer on our im
database.

Conclusions

We have shown how to modify the three leading mach
color constancy methods to deal with fluorescent surfa
Dealing with such surfaces has been ignored until now, 
we argue that doing so is important, as such surfaces
common in the modern world, and yet they dramatica
degrade the performance of existing algorithms. Althou
further work is needed to estimate the frequency 
occurrence of such surfaces, we pass on to the reade
following anecdotal datum. Our interest in explorin
fluorescent surfaces arose because such surfaces 
present in 20% of the randomly constructed scenes use
provide preliminary data for research into color constan
performance. Clearly we had to deal with fluorescen
before we could proceed towards our goal of having col
constancy algorithms for real world applications.
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