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Abstract
The Bradford curves are used in the CIECAM97 colour a
pearance model, and are ‘sharpened’ in the sense that
have narrower support than the cone fundamentals. S
tral sharpening is a method which finds the linear com
nation of a set of sensors that is most sensitive to a gi
interval of the visible spectrum. Here we investigate t
relationship between the apparently sharp Bradford cur
and the spectral sharpening method (since spectral sh
ening was not used to derive the Bradford curves). We fi
that Bradford curves can be derived using spectral sharp
ing but the sharpening intervals are not the ones we wo
might have expected or wished for. The Bradford interv
are far from the ‘prime wavelength’ intervals: those pa
of the visible spectrum where there is maximal visual se
sitivity. Also, independent of any sharpening argume
the Bradford curves are unexpected in the sense that
have some negative sensitivity. Here we address both th
concerns and produce sharpened versions of the Brad
curves that are both all-positive and also sharpened wi
wavelength intervals around the prime wavelengths.
a sense, we are continuing the work of MacAdam, a
Pearson and Yule, in forming positive combinations of t
colour-matching functions. However, the advantage of
spectral sharpening approach is that not only can we p
duce positive curves, but the process is ‘steerable’ in t
we can produce positive curves with as good or better pr
erties for sharpening within a given set of sharpening int
vals. At base, however, it is positivecolours in the trans-
formed space that are the prime objective. Therefore
also carry out sharpening of sensor curves governed no
positivity of the curves themselves but of colours resulti
from them. Curves that result have negative lobes, but g
erate positive colours. We find that this type of constrain
sharpening generates the best results, almost as good a
unconstrained sharpening but without the penalty of ne
tive colours.

1. Introduction
Spectral sharpening is a method of transforming colo
camera, scanner, or other optical device multispectral
age pixel values into new values that would have resul
from sensors with more narrow-band spectral sensit
ties [1]. The utility of such a transform is that for man
computer vision and colour image processing algorithm
sharper sensors result in better performance. Consi
for example, the simplest form of colour correction, th
von Kries diagonal transform for correcting from RGB va
ues under one illuminant to those under a second illu
nant. Theoretical sensors that act as delta functions wo
exactly obey a diagonal transform, and it was shown in
1227
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that spectral sharpening could greatly benefit such a co
constancy strategy.

Spectrally sharpened curves are derived as a m
transform of the human colour-matching functions. T
set of three Bradford curves, used in colour appeara
modelling, are themselves also written as a matrix tra
form of the colour-matching functions, and appear to
‘sharpened’: they are sensitive to smaller bands of the
ible spectrum. Yet, Bradford sensors were not derived
ing spectral sharpening. Rather, they were the result o
ting psychophysical corresponding colour data [2]. In t
paper, we use spectral sharpening to investigate Brad
sensors.

Our first result is to show that there exist three int
vals of the visible spectrum with respect to which spec
sharpening delivers sensitivity curves which are close
the Bradford sensors. We observe, however, that the sh
ening intervals we discover do not seem to make m
sense. From a mathematical standpoint the intervals
poor because the resulting sharpened curves really ar
very sharp with respect to these intervals. That is, the
rived sensors cannot behave like narrow-band sensor
sitioned in the sharpening intervals because they are s
elsewhere! From a practical viewpoint the sharpening
tervals are far from the ‘prime wavelength’ regions: tho
parts of the visible spectrum for which the visual system
maximally sensitive.

Sharpening apart, another potential problem for
Bradford curves is that they have negative lobes (i.e., ne
tive sensitivities). This means that it is possible that cer
highly saturated colours could under some lights ind
a zero or negative sensor response. If this were to
pen then colour constancy algorithms predicated on p
tive RGB values, e.g. those that utilise a maximum va
in an image (cf. [3]) could not be used directly. How
ever, perhaps the most compelling reason for sharpe
with positivity is colour ratio stability: if an algorithm use
colour ratios, as in [4], then if values fall close to zero
change sign then colour ratios can vary substantially.
well, if we consider log-based homomorphic filtering f
image enhancement, then the advantage of positive va
is evident.

The negative lobe problem led us to develop a c
strained spectral sharpening [5] that returns sharp sen
that are all positive. This naturally forces RGB colour v
ues in the ‘sharpened’ space to be positive. This work i
a sense the natural completion of that begun by MacAd
and Pearson and Yule [6]. These authors formed
ear combinations of the colour-matching functions, add
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various proportions of the curves until negatives result
Here we use a straightforward optimisation technique
stead, but in addition make the Pearson-Yule proced
steerable, as it were, by also insisting that the optimisati
concentrate each curve’s ‘energy’ within a given sharp
ing interval.

Since at base it is only positivecoloursthat are needed
we also carry out an optimisation that sharpens sen
curves subject to the constraint that colours in the tra
formed space are non-negative. I.e., we do not insis
positive curves, but only positive results. This final a
proach turns out to produce the best results for constra
sharpening, almost as effective as the best possible, un
strained sharpening.

2. Bradford Curves and Colour Appearance
Light entering the eye is a function of the surfaces in
scene and the prevailing illumination. IfE(�) denotes il-
lumination andS(�) surface reflectance then the reflect
light is proportional toE(�)S(�). In modelling the visual
response to this light one first calculates its XYZ tristim
lus coordinates:X =

R
!
�x(�)E(�)S(�)d�

Y =
R
!
�y(�)E(�)S(�)d�

Z =
R
!
�z(�)E(�)S(�)d�

(1)

where �x(�), �y(�) and �z(�) are the CIE colour match
ing functions and! denotes the visible spectrum. It
clear from eq. (1) that the spectral characteristics ofE(�)
strongly affects the(X;Y; Z) tristimulus values.

Colour appearance models attempt to quantify how
ferent surface colours appear when viewed in differ
viewing conditions. For example, it is apparent that if w
reverse the roles ofE(�) andS(�) in (1) we arrive at the
same tristimulus values (and perforce the same colour
cept): we cannot distinguish between a white wall view
under red light and vice versa. Of course, surface colo
are rarely seen in isolation and the colour for a surface s
in context tends to be perceived as more or less the s
colour across contexts (the visual system has colour c
stancy).

Colour appearance models use a chromatic ada
tion transform to model illumination. Supposex E;S de-
notes the XYZ tristimulus for a surfaceS(�) viewed under
E(�). We would like to find the tristimulus vectorx that
induces the same colour appearance under a second il
nantE0. This is calculated using the Bradford adaptati
transform:

x = T �1D E;E
0

T x E;S (2)
In (2),T is a fixed3�3matrix andD E;E

0

is an illuminant-
dependent diagonal matrix. It is important to note thatx

need not equalx E
0
;S , though it will generally be quite

similar. For our purposes, (2) can be usefully simplified
premultiplying both sides of eq. (2) byT , yielding

T x =D E;E
0

T x E;S (3)

In (3), the linear transform can be thought of as defi
ing new sensor functionsr(�), g(�) andb(�) (plotted in
Fig. 1):"

r(�)
g(�)
b(�)

#
=

"
t11 t12 t13
t21 t22 t23
t31 t32 t33

# "
�x(�)
�y(�)
�z(�)

#
(4)
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Denoting the RGB response forr(�), g(�) andb(�) as
� = [RGB]t it follows that:

� = DE;E
0

� E;s (4)
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Figure 1: Human colour-matching functions (dashed lines) a
Bradford-transformed curves (solid lines).

Equation (4) is very significant. It informs us tha
the effect of the illumination can be modelled by simp
scalars operating individually on each of theR, G and
B (the diagonal matrix has only three non-zero term
In comparison, the relationship between correspond
XYZs is much more complex.

Yet, why should a diagonal matrix model illuminatio
change for the Bradford curves but not for the the XY
functions? One explanation is that the sensitivity of t
Bradford curves is concentrated in a small interval of t
visible spectrum and it is well known that, the narrow
sensors are, the more accurately will a diagonal ma
model illumination change. One might reasonably hypo
esise, therefore, that the Bradford sensors are the hu
visual system’s attempt at synthesising narrow-band s
sors.

However, this hypothesis can be criticised. First, oth
work has shown that much more narrow-band sens
might be constructed. In terms of narrow-bandedness
Bradford curves are far from optimal. Second, on exa
ining the Bradford curves more closely one observes
while the curves are more narrow-band they do have
nificant sensitivity outside these intervals. Moreover, t
residual sensitivity may be ‘negative’ and so the Bradfo
responses can be driven to 0 or driven towards nega
numbers. The issues of optimising narrow-bandedness
maintaining positivity are addressed in the next secti
where we mean to derive alternate versions of the Bradf
curves that are all-positive (non-negative), while mainta
ing or improving any benefits that derive from spect
sharpening.

3. Spectral Sharpening: Relation to the
Bradford Curves

3.1. Spectral Sharpening
Spectral sharpening means choosing three specific ‘sh
ening intervals’ within the visible spectrum, in which we
would like energy in sensor curves to be concentrated
the visible spectrum consists of wavelengths!, then our
objective is to decrease the amount of energy for wa
lengths� = !� outsidea desired sharpening interval .

Suppose in general that there arep sensors (e.g.,p =
3), and ans� p matrixQ of sampled sensor values. E.g
8
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s might be 31 if we sample between 400nm and 700
at a 10nm interval. We may choose a different sharpen
interval for each of thep sensors and hence carry out
separate minimisation for each of thep colour channels.

Thus spectral sharpening consists of finding ap-
component vectorc that minimises the least squares sum
mation

min
X
�2�

k

[Q (�)c ]2 + �

(X
�2!

[Q (�)c ]2 � 1

)
(5)

for k = 1::p where� denotes a Lagrange multiplier tha
ensures the resulting derived sensor has unit length in
L2 norm. Let us define an operator�� that picks out
wavelength indices in the sharpening interval� within any
sum. E.g., the operator� k picks out wavelength indices
in the sharpening interval k. Using this operator, it is fur-
ther useful to define ap�pmatrix involving the summation

� (�) =
X
�2�

Q t(�)Q (�) = Q t��Q (6)

Then taking partial derivatives with respect to unknow
vectorc and equating to the zero vector produces the Eu
equation, which can be written

� (�k)c � � [� (!)c ] = 0 (7)
Note that here� (!) is justQ tQ .

Differentiating (5) with respect to� simply sets the
scale of the resulting sensor to unity in the L2 norm:X

�2!

[Q (�)c ]2 = c t
� (!)c = 1 (8)

Rearranging this equation, we see that solving forc (and
consequently the sharpened sensor) is an eigenvector p
lem: [� (!)]�1

� (�k)c = �c (9)
There arep solutions of the above equation, each so
tion corresponding to a stationary value, so we choo
the eigenvector which minimises

P
�2�k

[Q (�)c ]2. It is
straightforward to show [1] thatc derived in this way is
always a real-valued vector.

3.2. Sharpening Gives the Bradford Curves
Spectral sharpening applied to the human colour-match
functions creates curves with negative lobes such as
pear in the Bradford curves. An interesting questi
arises, therefore: if the Bradford curves are purported
be ‘sharpened’ in some sense, is it possible to write th
explicitly as the sharpened versions of the colour-match
functions? And, if so, then what are the sharpening int
vals to which the Bradford curves correspond?

The all-non-negative 1931 2� colour matching func-
tions�x(�); �y(�); �z(�) making up ans�3matrixX , along
with the Bradford-transformed curves making up a simi
matrixQ

B
, are shown in Fig. 1 (normalised to unity in th

L1 norm, so that each column sums to 1).
In terms ofX , the Bradford curvesQ

B
are given by

a matrix transform Q
B

= X B (10)
with 3 � 3 Bradford transform matrixB = T t. If
the Bradford curves are indeed close to being spectr
sharpened combinations of the colour matching functio
X , then for each colour channel we should find that t
corresponding column of the Bradford transform matr
B satisfies the eigenvalue problem (9).

Here, matrix� (!), representing a summation over th
entire visible spectrum,! is given by

� (!) = X tX :
3229
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A priori, we do not know thesharpening intervals
 k; k = 1::3 and the main task is to determine thes
Thus, fork in 1::3, we mean to find the sharpening inte
val  k, or its corresponding interval�k = ! �  k, and
hencefind the matrixwith components

�(�k)mn �
X
i 2 �k

XimXin

that best satisfies (9):
find �k 3 [� (!)]�1

� (�k)b k ' � b k (11)
whereb k is thekth column of the transform matrixB .
This amounts to choosing a set of sharpening intervals
that the resulting matrix on the left hand side of eq. (1
is closest to being a matrix that has one of its eigenvect
equal to the column of the Bradford transform matrix th
is in question.

Since we do not know just what eigenvalue� we shall
have, for any particular sharpening interval chosen, a s
ple algorithm is to1. pick a sharpening interval k; 2.
form the vectorv k = [� (!)]�1

� (�k)b k on the left
hand side of (11);3. normalise the length of vectorv k;
4. also normalise the length of the vectorb k on the right
hand side of eq. (11).5. Calculate the Euclidean distanc
between the normalised vectorsv k andb k. We repeat1
through5 to find the minimum Euclidean distance overa
and so the best solution to (11).

Once we have found sharpening intervals k we can
go back to our original colour-matching curvesX and
sharpen them in k according to eq. (9), without these nor
malisations. The resulting curves can then be compa
with the actual Bradford curvesQ

B
.

It turns out, using this analysis, that the Bradfo
curves correspond to sharpening in the following inte
vals: R: 580nm spike; G: 550–560nm interval; B: 460n
spike. Fig. 2 shows the Bradford curves (dashed curv
and the approximations (solid curves) to these form
by actually sharpening the colour matching function
The striking agreement between the Bradford curves a
those for sharpened colour-matching functions implies t
we may claim: the Bradford curves equal the human
colour-matching functions, sharpened in narrow inter-
vals around 460, 555, and 580 nm. Although spectral
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Figure 2: Human colour-matching functions sharpened by u
constrained optimisation (solid lines), optimised for the sa
sharpening intervals as the Bradford curves, and compared
the original Bradford curves (dashed lines).

sharpening can deliver Bradford curves the results are
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as one might expect. Sharpening at 460, 555 and 580
returns respectively sensors which peak at 450nm, 540
and 600nm. That is, the maximum sensitivity is not in t
sharpening interval. In some sense this indicates a sh
ening failure; we have been unable to concentrate sens
ity in the sharpening interval. Interestingly, 450nm, 540n
and 600nm are very close to the ‘prime wavelengths’,
those parts of the spectrum to which we are maximally s
sitive. Maybe intervals anchored in these regions would
more appropriate?

4. Sharpening with Positivity, and Positive
Bradford Curves

We can ensure positivity of spectrally-sharpened sens
in two different ways, and each of these ways gives r
to a different approach to sharpening. Firstly, since
start with positive sensor curves, the simplest approac
developing a transform with positivity is to constrain th
optimisation to a solution with positive, or non-negativ
weights.

A second approach is to relax the above condition
allowing positive or negative weights, but directly con
straining the optimisation so that the resultingsensors
themselves are non-negative.

We refer to the first approach as an optimisati
method withconstrained coefficientsand the second ap
proach as an optimisation method withconstrained sen-
sors.

Using numerical optimisation schemes, here we inv
tigate the effect of using an L1 objective with an L1 con-
straint, and an L2 objective with an L2 constraint.
4.1. Constrained Coefficients Sharpening
In this case our objective is to carry out a numerical op
misation with objective function

min
P
�k
jQ (�)c j�

with constraints� P
! jQ (�)c j� = 1; L� normalisation

c � 0 ; non-neg. coeff’s

(12)

where the exponent� is 1 for an optimisation based o
an L1 norm, or is 2 for a least squares, L2 norm based
approach.

Firstly, we note two important theorems for these cas
that prove that in fact the above minimisation need not
carried out throughout thec –space [5]:

Theorem 1Convexity implies that the solution for L1–
L1 sharpening, with coefficients constrained to be no
negative, lies on the boundary of the set of possible v
torsc .

The L2–L2 case is the same as original spectral sha
ening, but makes use of constrained optimisation. In t
case, as in Theorem 1 for the L1–L1 case, we have a con
vexity result that allows us to examine only the bounda
of possible values of vectorc .

Theorem 2Convexity implies that the solution for L2–
L2 sharpening lies on the boundary of the set of possi
vectorsc , if those coefficients are constrained to the no
negative range.
4.2. Constrained Coefficients Bradford Curves
We may in fact select any sharpening intervals that are
interest, and here we wish to use sharpening intervals
encompass the prime wavelengths 450, 540, and 610
These particular wavelengths were shown to be the clo
set of spikes to the human colour-matching functions,
4230
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a collection of uniformly-distributed spectra [7] (they ar
the best positions for unconstrained sharpening), and
areas of maximal visual sensitivity[8].

The particular intervals we choose are [440–460] f
blue, [530–550] for green, and [600–620] for red. The
with these sharpening intervalsunconstrained spectral
sharpening of theX colour-matching curves results in th
sharpened sensors of Fig. 3 (solid curves).

400 450 500 550 600 650 700
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Figure 3: Human colour-matching functions (dashed lines), com
pared to best unconstrained L2–L2 optimisation (solid lines).

Using sharpeningwith positivity , Theorems 1 and 2
guarantee that weighting vectorsc lie on the boundary of
the search space, and that conclusion is indeed borne
here. However, we find that in fact the ‘sharpest’ positi
sensors resulting fromX , using the prime wavelength in-
tervals, are just the original curves themselves, except
the sharpened version of the�z(�) curve, which is a com-
bination of�z(�) and a small amount of�x(�). That is, the
dashed lines in Figure 3 can be interpreted as the the
sharpening of the XYZ curves. It is clear that, in this cas
little sharpening has been achieved.
4.3. Constrained Sensor Sharpening
Instead of constraining just the weighting coefficients, w
can instead constrain the entiresensor functionresult.
I.e., we may allow coefficientsc to take negative values
but constrain the resulting sensor function itself to no
negative values.

In this case (12) is modified. We no longer use a low
bound constraint onc , but instead we constrainQ c :

min
P
�k
jQ (�)c j�

with constraints� P
! jQ (�)c j� = 1; L� normalisation

Q (�)c � 0 non-neg. sensor result

(13)

This is a linear or a quadratic programming problem wi
one equality constraint ands inequality constraints (e.g.,s
may be 31) [5].
4.4. Positive Bradford Curves from Constrained Sen-
sors
The results of this type of sharpening are shown in Fig.
which results from sharpening the colour-matching fun
tionsX . However, since the Bradford curves are them
selves simply a matrix transform away from the colou
matching functions, we arrive at precisely the same cur
if we instead try to sharpen the Bradford curves the
selves.

To evaluate such sharpened curves, let us defin
‘degree-of-sharpness’ goodness measure" showing how
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Figure 4: Bradford curves sharpened by constrained L2–L2
sharpening with the sensor result constrained to non-negativ
(solid lines). Original colour-matching functions are also show
(dashed lines).

much ‘energy’ is concentrated in the sharpening inter
 . Each sensork = 1::3 will employ a different k. If "
measures the amount of energy contained in relative to
in the entire visible spectrum!, we may define

" = 100 ?

P
 k

jqk(�)j
2P

! jqk(�)j
2

(14)

for each of thek = 1::p sensors. The second line of Ta
ble 1 shows how unconstrained spectral sharpening with
L2 objective and L2 norm, derived according to the min
imisation (5), behaves with respect to the goodness m
sure. We note that generally spectral sharpening gre
improves the energy concentration.

Table 1 also shows results for the original Bradfo
curves and for the Bradford curves sharpened by constr
ing the sensor result to non-negativity, according to t
minimisation (13).

We see that the sharpened functions that result fr
constrained optimisation have good energy concentratio
better than or about the same as those for the Bradf
curves, even though the new curves are all-non-nega
while every Bradford curve actually has some negative v
ues. The unconstrained minimisation can, of course, p
duce better energy concentration because we allow ne
tive lobes. For comparison, we also show the energy c
centration for the MacAdam curves quoted by Pearson
Yule [6].

Another useful feature of sharpened sensors is that
‘crosstalk’ between sensors is usually diminished. Let
define crosstalk� between channelsi and j of sensors
Q by the angle

� = cos�1

�
jq t

i
q
j
j

kq
i
kkq

j
k

�
(15)

whereq
i

is theith column ofQ . The ideal value for� is
90�. Table 2 shows that the value for the crosstalk betwe
channels is generally improved, using sharpening.

In the next section we see that in fact we need not h
positive sensors in order to have positive transformed-R
values, with even better results.

5. Data-Driven Optimisation
Above, we successfully found positive sensors by co
straining the curves themselves. However, in applicatio
all we actually require is that transformed RGB values
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non-negative. Could we not then use a type of ‘data-ba
sharpening’ to determine sensors with these desired pr
erties?

In [1], it was shown that the least squares transfo
from a set of RGB’s under one illuminant to the set und
another illuminant yields approximately the same sharp
ing transform as recapitulated inx3.1 if that least squares
matrix is diagonalised. In [1] this phenomenon was r
ferred to as ‘data–based sharpening’.

Here we wish to investigate whether the requireme
that the sensors be sharpened can be combined with
idea that under the ‘new’ sensors we wish to have on
non-negative RGB values. We shall see that this sche
which may yield sensors with negative lobes, leads
sharper sensors than those formed under the assump
of strict non-negativity of the curves themselves.

Suppose we consider an RGB triple� formed from
a colour signalC(�) arriving at the camera sensors:
E(�) is the illuminant andS(�) is the surface spectral re
flectance function corresponding to a particular pixel, th

C(�) = E(�)S(�) ;
� =

P
�2!

C(�)Q (�) (16)

Suppose we collect all such RGB triples� into ann � 3
arrayR , and also collect all the colour signals into ann�s
arrayC . Then we have

R = C Q (17)
If the sensors themselves are changed toQ 0 via a matrix
transform, then we obtain

Q 0 = Q T (18)
where columnt k pertains to sharpening thekth interval.
The collection of RGB values changes to those seen un
the new sensors:

R 0 = C Q T = R T (19)
Now, we could set up a minimisation to achieve shar

ening in a given interval, subject to non-negativity ofall
such sharpened RGB valuesR 0. However, this presents
an unworkable set of constraints and in fact we can ma
use of convexity to work with convex hull points only.

Suppose we form the colour signal collectionC by
using the reflectance spectra of the set of Munsell pa
chips, various natural object reflectances, Dupont dye
flectances, and Macbeth ColorChecker reflectances.
form colour signals from these reflectances, let us use
illuminant spectra: A, D50, D65, D75, two fluorescent i
luminants, and several measured SPDs.

Under each of the illuminants the set of calculate
RGB’s forms a convex set [9].

Let us impose the reasonable constraint that the n
negativity of RGB points corresponding to the overall co
vex hull of the setR be maintained under a transform (19

Suppose the boundary set of RGB values isfR , withfR anen � s matrix, whereen is the number of samples in
the boundary set. Our data-driven minimisation is thus

min
P
�k

[Q (�)t k]
�

with constraints� P
! [Q (�)t k]

� = 1; L� normalisationfR t k � 0 ; non-neg. RGB values

(20)

Here we use an L2 norm, with� = 2.
The sharpened sensors that result from this optimi

tion are displayed in Fig. 5.
The energy concentration is shown as the last line

Table 1 and is seen to be the best found using constrai
1
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Figure 5: Sensors sharpened by a data-driven L2–L2 sharpening
with transformed convex hull points constrained to non-negativ
(solid lines). Original curves are also shown, dashed.

optimisation. Interestingly, the sensors themselves arenot
all-positive. The data-driven sharpening results in sens
that are similar to the unconstrained ones of Fig. 3,
produce positive RGB’s.

Thus we are left with the outcome that, for the sens
examined here, a data–driven sharpening that does no
sist on non-negative sensors, but only on non-negative
sor response values, gives the best sharpening.

From the results of Tables 1 and 2, we can state
following: The Bradford curves, that have been trans-
formed via spectral sharpening with positivity, have
superior energy concentration and crosstalk than the
original curves.

Energy Concentration (%)
Algorithm R G B
No sharpening 39.81 34.23 64.11
Unconstrained sharpening 50.53 49.95 64.62
Bradford 35.79 47.37 64.38
Pearson-Yule 24.77 44.87 64.11
Constrained-sensor sharpen’g40.30 44.90 64.29
Data-driven sharpening 50.03 47.23 64.56

Table 1: Energy concentration in prime wavelength sharpe
ing intervals, for original colour-matching functionsX , sensors
sharpened using unconstrained L2–L2 optimisation, the Bradford
curves, the Pearson-Yule curves, and sensors sharpened u
constrained optimisation. The last line shows results for sha
ening based on constraining RGBs, rather than the sensors th
selves.

Crosstalk (�)
Algorithm (R,G) (R,B) (G,B)
No sharpening 40.51 75.25 85.31
Unconstrained sharpening 82.42 87.53 86.14
Bradford 51.58 89.62 88.33
Pearson-Yule 34.25 88.51 83.50
Constrained-sensor sharpening53.35 81.13 83.47
Data-driven sharpening 80.35 86.35 82.34

Table 2: Crosstalk�, for original colour-matching functions,
sensors sharpened using unconstrained optimisation, Bradf
and Pearson-Yule curves, sensors sharpened using constra
optimisation, and sensors derived by constraining RGBs in
transformed space.

6. Conclusions
We applied techniques involving both L2 and L1 objectives
and norms to the human colour-matching functions. U
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constrained optimisation gives the best results for sharp
ing, but results in curves with negative lobes. An optimis
tion based on constraining only transformed RGBs, rat
than the curves themselves, does best for a constra
sharpening, delivering almost as good results as for
constrained sharpening but without the penalty of negat
colours.

Note that the types of optimisation reported here can
applied to sensor systems of any dimensionality, althou
results are reported here only for the 3–band human s
tem.

In a sense, the constrained-coefficients a
constrained-sensors techniques presented here a
natural completion to the work of MacAdam, and Pears
and Yule [6]. The main advantage of using an optimis
tion, with positivity, that maximises energy concentratio
in desired sharpening intervals is that the process of m
ing positive linear combinations of the colour-matchin
curves is guided not by simply decreasing crosstalk
making the most narrow curves, but by the practic
necessity of sharpening within specific areas of the visi
spectrum.

However, the data-driven approach, with an RGB co
straint, is shown to be best overall, delivering almost
good sharpening as the best possible, but with none of
drawbacks. This being the case, we wonder whether th
curves would lead to more accurate chromatic adapta
than the Bradford curves. We remind the reader that
latter were derived via a simple numerical fit for asingle
single set of corresponding colour data. There is no go
reason to suppose they are optimal in any sense.
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