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Abstract

The Bradford curves are used in the CIECAM97 colour apthat spectral sharpening could greatly benefit such a colour
pearance model, and are ‘sharpened’ in the sense that thegnstancy strategy.
have narrower support than the cone fundamentals. Spec- Spectrally sharpened curves are derived as a matrix
tral sharpening is a method which finds the linear combitransform of the human colour-matching functions. The
nation of a set of sensors that is most sensitive to a giveget of three Bradford curves, used in colour appearance
interval of the visible spectrum. Here we investigate themodelling, are themselves also written as a matrix trans-
relationship between the apparently sharp Bradford curveform of the colour-matching functions, and appear to be
and the spectral sharpening method (since spectral sharigharpened’: they are sensitive to smaller bands of the vis-
ening was not used to derive the Bradford curves). We findble spectrum. Yet, Bradford sensors were not derived us-
that Bradford curves can be derived using spectral sharpeifg spectral sharpening. Rather, they were the result of fit-
ing but the sharpening intervals are not the ones we woulting psychophysical corresponding colour data [2]. In this
might have expected or wished for. The Bradford intervalspaper, we use spectral sharpening to investigate Bradford
are far from the ‘prime wavelength’ intervals: those partssensors.
of the visible spectrum where there is maximal visual sen-  Our first result is to show that there exist three inter-
sitivity. Also, independent of any sharpening argumentyals of the visible spectrum with respect to which spectral
the Bradford curves are unexpected in the sense that theparpening delivers sensitivity curves which are close to
have some negative sensitivity. Here we address both theske Bradford sensors. We observe, however, that the sharp-
concerns and produce sharpened versions of the Bradfoehing intervals we discover do not seem to make much
curves that are both all-positive and also sharpened withisense. From a mathematical standpoint the intervals are
wavelength intervals around the prime wavelengths. Irpoor because the resulting sharpened curves really are not
a sense, we are continuing the work of MacAdam, andrery sharp with respect to these intervals. That is, the de-
Pearson and Yule, in forming positive combinations of therived sensors cannot behave like narrow-band sensors po-
colour-matching functions. However, the advantage of thesitioned in the sharpening intervals because they are sharp
spectral sharpening approach is that not only can we preelsewhere! From a practical viewpoint the sharpening in-
duce positive curves, but the process is ‘steerable’ in thatervals are far from the ‘prime wavelength’ regions: those
we can produce positive curves with as good or better propparts of the visible spectrum for which the visual system is
erties for sharpening within a given set of sharpening intermaximally sensitive.
vals. At base, however, it is positigmloursin the trans- Sharpening apart, another potential problem for the
formed space that are the prime objective. Therefore wdradford curves is that they have negative lobes (i.e., nega-
also carry out sharpening of sensor curves governed not kiyve sensitivities). This means that it is possible that certain
positivity of the curves themselves but of colours resultinghighly saturated colours could under some lights induce
from them. Curves that result have negative lobes, but gere zero or negative sensor response. If this were to hap-
erate positive colours. We find that this type of constrainedyen then colour constancy algorithms predicated on posi-
sharpening generates the best results, almost as good as five RGB values, e.g. those that utilise a maximum value
unconstrained sharpening but without the penalty of negain an image (cf. [3]) could not be used directly. How-
tive colours. . ever, perhaps the most compelling reason for sharpening
1. Introduction with positivity is colour ratio stability: if an algorithm uses
Spectral sharpening is a method of transforming colourcolour ratios, as in [4], then if values fall close to zero or
camera, scanner, or other optical device multispectral imehange sign then colour ratios can vary substantially. As
age pixel values into new values that would have resultedvell, if we consider log-based homomorphic filtering for
from sensors with more narrow-band spectral sensitiviimage enhancement, then the advantage of positive values
ties [1]. The utility of such a transform is that for many is evident.
computer vision and colour image processing algorithms, The negative lobe problem led us to develop a con-
sharper sensors result in better performance. Considestrained spectral sharpening [5] that returns sharp sensors
for example, the simplest form of colour correction, thethat are all positive. This naturally forces RGB colour val-
von Kries diagonal transform for correcting from RGB val- ues in the ‘sharpened’ space to be positive. This work is in
ues under one illuminant to those under a second illumia sense the natural completion of that begun by MacAdam,
nant. Theoretical sensors that act as delta functions wouldnd Pearson and Yule [6]. These authors formed lin-
exactly obey a diagonal transform, and it was shown in [1]Jear combinations of the colour-matching functions, adding
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various proportions of the curves until negatives resulted.Denoting the RGB response fof\), g(A) andb()\) as
Here we use a straightforward optimisation technique inp = [RG BJ! it follows that:
stead, but in addition make the Pearson-Yule procedure BB
steerableas it were, by also insisting that the optimisation p =D
concentrate each curve’s ‘energy’ within a given sharpen-
ing interval.

Since at base it is only positiwmloursthat are needed,
we also carry out an optimisation that sharpens sensor
curves subject to the constraint that colours in the trans-
formed space are non-negative. l.e., we do not insist on
positive curves, but only positive results. This final ap-
proach turns out to produce the best results for constrained
sharpening, almost as effective as the best possible, uncon-
strained sharpening.

2. Bradford Curves and Colour Appearance

Light entering the eye is a function of the surfaces in a
scene and the prevailing illumination. H(\) denotes il- : ‘ ‘ ‘ ‘
lumination andS(\) surface reflectance then the reflected Tew w w w w W
light is proportional to£(A\)S()). In modelling the visual ~ Figure I Human colour-matching functions (dashed lines) and
response to this light one first calculates its XYZ tristimu- Bradford-transformed curves (solid lines).
lus coordinatesy — [ ZA)EN)S(A\)dA Equation (4) is very significant. It informs us that
Y = [ G(VEM)S(A\)dA 1) the effect of the illumination can be modelled by simple
7 — jw 2OV E(N S scalars operating individually on each of tfi® G and
= J, ZOEX)S() B (the diagonal matrix has only three non-zero terms).
where Z()), 7(\) and z(A) are the CIE colour match- In comparison, the relationship between corresponding
ing functions andv denotes the visible spectrum. It is XYZs is much more complex.
clear from eq. (1) that the spectral characteristic& 0X) Yet, why should a diagonal matrix model illumination
strongly affects théX, Y, Z) tristimulus values. change for the Bradford curves but not for the the XYZ
Colour appearance models attempt to quantify how diffunctions? One explanation is that the sensitivity of the
ferent surface colours appear when viewed in differenBradford curves is concentrated in a small interval of the
viewing conditions. For example, it is apparent that if wevisible spectrum and it is well known that, the narrower
reverse the roles dE(\) andS(A) in (1) we arrive atthe sensors are, the more accurately will a diagonal matrix
same tristimulus values (and perforce the same colour pemodel illumination change. One might reasonably hypoth-
cept): we cannot distinguish between a white wall viewedesise, therefore, that the Bradford sensors are the human
under red light and vice versa. Of course, surface coloursisual system’s attempt at synthesising narrow-band sen-
are rarely seen in isolation and the colour for a surface seesors.
in context tends to be perceived as more or less the same However, this hypothesis can be criticised. First, other
colour across contexts (the visual system has colour convork has shown that much more narrow-band sensors
stancy). might be constructed. In terms of narrow-bandedness the
Colour appearance models use a chromatic adaptd&radford curves are far from optimal. Second, on exam-
tion transform to model illumination. Suppose®-® de-  ining the Bradford curves more closely one observes that
notes the XYZ tristimulus for a surfacq \) viewed under ~ while the curves are more narrow-band they do have sig-
E()\). We would like to find the tristimulus vectar that  nificant sensitivity outside these mtervals. Moreover, this
induces the same colour appearance under a second illuntesidual sensitivity may be ‘negative’ and so the Bradford
nantE’. This is calculated using the Bradford adaptationresponses can be driven to 0 or driven towards negative
transform: _p-\pBEp S 5 numbers. The issues of optimising narrow-bandedness and
C o z=T _ . (2) maintaining positivity are addressed in the next section,
In(2),T is afixed3x3 matrixandD ™" isanilluminant- where we mean to derive alternate versions of the Bradford
dependent diagonal matrix. It is important to note that  curves that are all-positive (non-negative), while maintain-
need not equak £+5, though it will generally be quite ing or improving any benefits that derive from spectral
similar. For our purposes, (2) can be usefully simplified bysharpening.

P (4)

premultiplying both sides of eq. (2) 1% , yielding 3. Spectral Sharpening: Relation to the
Tz =D T 2?5 (3) 3.1. Spectral Shgrrp?e%%d Curves

Spectral sharpening means choosing three specific ‘sharp-
In (3), the linear transform can be thought of as defin-ening intervals) within the visible spectrum, in which we
ing new sensor functiong ), g(A) andb(A) (plotted in  would like energy in sensor curves to be concentrated. If
Fig. 1): the visible spectrum consists of wavelengthsthen our
objective is to decrease the amount of energy for wave-

r(\) ti1 tiz tis z(\) lengthsp = w — ¢ outsidea desired sharpening interval
g\) | = | tar taa ta3 7(\) (4) Suppose in general that there arsensors (e.gp =
b(N) t31 t32 33 Z(\) 3), and ans x p matrix Q of sampled sensor values. E.g.,
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s might be 31 if we sample between 400nm and 700nm A priori, we do not know thesharpening intervals
at a 10nm interval. We may choose a different sharpening;,, k& = 1..3 and the main task is to determine these.
interval for each of the sensors and hence carry out a Thus, fork in 1..3, we mean to find the sharpening inter-
separate minimisation for each of theolour channels. val ¢y, or its corresponding interval, = w — ¢, and

Thus spectral sharpening consists of findingpa hencefind the matrixwith components
component vectoe that minimises the least squares sum- A(ér) - Z X. X
mation mnoT oy s n

1€ Pp

. hat best satisfies (9):
min Y [Q Vel +p{ Y[R WelP-1¢ (5 M _
A;;k[ ] Aze;[ ] findgr > [AW]TA(@)br = pbr  (11)
for k = 1..p wherey denotes a Lagrange multiplier that Whereb , is the kth column of the transform matriB .
ensures the resulting derived sensor has unit length in thehis amounts to choosing a set of sharpening intervals so
L, norm. Let us define an operatdyr,, that picks out that the resulting matrix on the left hand side of eq. (11)

wavelength indices in the sharpening intervakithin any  is closest to being a matrix that has one of its eigenvectors
sum. E.g., the operatak N picks out wavelength indices equal to the column of the Bradford transform matrix that

in the sharpening interval,.. Using this operator, it is fur- IS in question.

: P ; ; Since we do not know just what eigenvajueve shall
ther useful'to define gx p matrix mvo_lvmg the summation have, for any particular sharpening interval chosen, a sim-

_ t t
A(a) = ZQ MR (V) = @'AaQ (6) ple algorithm is tol. pick a sharpening interval;; 2.
A€Ex _ —1
Then taking partial derivatives with respect to unknown];gr% tggevg;:t(cirf)é. Eomélbi}s)]e th% fgﬁélt’hko?r\],etggift
vectore and equating to the zero vector produces the Eulel; " 5150 normalise the length of the vectof, on the rigﬁt

equation, which can be written hand side of eq. (11)6. Calculate the Euclidean distance

A (gb"‘)c. R [1} (w)e]=0 @) between the normalised vectarg, andb ;. We repeail
Note that hereA (w) is justQ "Q . . through5 to find the minimum Euclidean distance overall
Differentiating (5) with respect tq. simply sets the  4nd s the best solution to (11).
Z[Q Ne]? = ¢'A(w)e =1 (8) go back to our original colour-matching curvé$ and
Aew sharpen them igy;, according to eq. (9), without these nor-

Rearranging this equation, we see that solvingcfgland ~ malisations. The resulting curves can then be compared
consequently the sharpened sensor) is an eigenvector prolvith the actual Bradford curveg 5.
lem: A (W)]'A (¢r)e = pe 9 It turns out, using this analysis, that the Bradford

There arep solutions of the above equation, each solu-CUrves correspond to sharpening in the following inter-
tion corresponding to a stationary value, so we ChOOSés{SliﬁéR#isgsozng]hzexllget’hg'B\E;ggf_osreologunr]vlg;e(rgggh%d‘lcel?rcg)
the eigenvector which minimisés , ., (@ (Ve ]®. Itis 54 e approximations (solid curves) to these formed
straightforward to show [1] that derived in this way is  py actually sharpening the colour matching functions.
always a real-valued vector. The striking agreement between the Bradford curves and
3.2. Sharpening Gives the Bradford Curves those for sharpened colour-matching functions implies that

Spectral sharpening applied to the human colour-matchinrge may claim: the Bradford curves equal the human

functions creates curves with negative lobes such as ap2l0ur-matching functions, sharpened in narrow inter-
pear in the Bradford curves. An interesting question’a/S around 460, 555, and 580 nm Although spectral

arises, therefore: if the Bradford curves are purported tgharpenmg can deliver Bradford curves the results are not

be ‘sharpened’ in some sense, is it possible to write them
explicitly as the sharpened versions of the colour-matching
functions? And, if so, then what are the sharpening inter-
vals to which the Bradford curves correspond?

The all-non-negative 1931°2colour matching func-
tionsz(\), y(\), z(A) making up ars x 3 matrix X , along
with the Bradford-transformed curves making up a similar
matrix@ g, are shown in Fig. 1 (normalised to unity in the
L, norm, so that each column sums to 1).

In terms of X , the Bradford curve®) g are given by
a matrix transform @ 5 = XB (10)

with 3 x 3 Bradford transform matrixB = T |If

the Bradford curves are indeed close to being spectrally — ‘ ‘ ‘ ‘
sharpened combinations of the colour matching functions T e W w0 W W
X , then for each colour channel we should find that the

corresponding column of the Bradford transform matrix Figure 2 Human colour-matching functions sharpened by un-

0.1 T

B satisfies the eigenvalue problem (9). constrained optimisation (solid lines), optimised for the same
Here, matrixA (w), representing a summation over the sharpening intervals as the Bradford curves, and compared to
entire visible spectrumy is given by the original Bradford curves (dashed lines).
Aw) = X'X
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as one might expect. Sharpening at 460, 555 and 580nm collection of uniformly-distributed spectra [7] (they are
returns respectively sensors which peak at 450nm, 540nthe best positions for unconstrained sharpening), and are
and 600nm. That is, the maximum sensitivity is not in theareas of maximal visual sensitivity[8].
sharpening interval. In some sense this indicates a sharp- The particular intervals we choose are [440-460] for
ening failure; we have been unable to concentrate sensitiblue, [530-550] for green, and [600-620] for red. Then
ity in the sharpening interval. Interestingly, 450nm, 540nmwith these sharpening intervalsnconstrained spectral
and 600nm are very close to the ‘prime wavelengths’, i.esharpening of th&X colour-matching curves results in the
those parts of the spectrum to which we are maximally sensharpened sensors of Fig. 3 (solid curves).
sitive. Maybe intervals anchored in these regions would be
more appropriate? | . . 0

4. Sharpening with Positivity, and Positive

Bradford Curves &

We can ensure positivity of spectrally-sharpened sensors
in two different ways, and each of these ways gives rise
to a different approach to sharpening. Firstly, since we
start with positive sensor curves, the simplest approach to
developing a transform with positivity is to constrain the
optimisation to a solution with positive, or non-negative,
weights.

A second approach is to relax the above condition by
allowing positive or negative weights, but directly con-
straining the optimisation so that the resultisgnsors
themselves are non-negative. o wm  w wm w w w

We refer to the first approach as an optimisationFigure 3 Human colour-matching functions (dashed lines), com-
method withconstrained coefficientand the second ap- pared to best unconstrained-+L, optimisation (solid lines).

proach as an optimisation method witbnstrained sen- Using sharpeningyith positivity , Theorems 1 and 2

sors DD )
: : et . guarantee that weighting vectatdie on the boundary of
tigatjesmg gl]ﬂfgcetrgfabgi%tém;ia&ot;};&?/%mﬁfﬁ genrivggr']r_westhe search space, and that conclusion is indeed borne out
straint, and an 4 objective wilth an L constraint here. However, we find that in fact the ‘sharpest’ positive
4.1. Constrained Coefficients Sharpening ' sensors resulting fronX , using the prime wavelength in-
In this case our objective is to carry out a numerical Op,[i_tervals, are just the original curves themselves, except for
misation with objective function the sharpened version of theA) curve, which is a com-
min 3, |Q (Ve |” bination ofz()) and a small amount af(\). That s, the
. Py, 1™ dashed lines in Figure 3 can be interpreted as the the best
with constraints o (12)  sharpening of the XYZ curves. Itis clear that, in this case,
Y@ (Nel” =1, L, normalisation little sharpening has been achieved.
c >0, non-neg. coeff’s 4.3. Constrained Sensor Sharpening
where the exponent is 1 for an optimisation based on Instead of constraining just the weighting coefficients, we
an L; norm, or is 2 for a least squares; horm based can instead constrain the entisensor functionresult.
approach. l.e., we may allow coefficients to take negative values
Firstly, we note two important theorems for these case®ut constrain the resulting sensor function itself to non-
that prove that in fact the above minimisation need not béegative values. .
carried out throughout the—space [5]: In this case (12) is modified. We no longer use a lower
Theorem 1Convexity implies that the solution fog+  bound constraint on , but instead we constrai@ c :
L, sharpening, with coefficients constrained to be non- " Zgbk 1Q (\e

negative, lies on the boundary of the set of possible vec- With constraints (13)
torsc. >wl®@ N)e | = 1, L, normalisation
The L,—L» case is the same as original spectral sharp- Q(MNec >0 non-neg. sensor result

ening, but makes use of constrained optimisation. In thisThis’is a linear or a quadratic programming problem with
case, as in Theorem 1 for the-tL; case, we have a con- one equality constraint andinequality constraints (e.gs,
vexity result that allows us to examine only the boundarymay be 31) [5].
of possible values of vectar. 4.4. Positive Bradford Curves from Constrained Sen-
Theorem 2Convexity implies that the solution fos  sors
L, sharpening lies on the boundary of the set of possiblerhe results of this type of sharpening are shown in Fig. 4,
vectorse , if those coefficients are constrained to the non-which results from sharpening the colour-matching func-
negative range. tions X . However, since the Bradford curves are them-
4.2. Constrained Coefficients Bradford Curves selves simply a matrix transform away from the colour-
We may in fact select any sharpening intervals that are ofmatching functions, we arrive at precisely the same curves
interest, and here we wish to use sharpening intervals that we instead try to sharpen the Bradford curves them-
encompass the prime wavelengths 450, 540, and 610nrselves.
These particular wavelengths were shown to be the closest To evaluate such sharpened curves, let us define a
set of spikes to the human colour-matching functions, fordegree-of-sharpness’ goodness measushowing how

230



The Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS& T

non-negative. Could we not then use a type of ‘data-based
sharpening’ to determine sensors with these desired prop-
erties?

In [1], it was shown that the least squares transform
from a set of RGB’s under one illuminant to the set under
another illuminant yields approximately the same sharpen-
ing transform as recapitulated §3.1 if that least squares
matrix is diagonalised. In [1] this phenomenon was re-
ferred to as ‘data—based sharpening’.

Here we wish to investigate whether the requirement
that the sensors be sharpened can be combined with the
idea that under the ‘new’ sensors we wish to have only

, R Y4 . non-negative RGB values. We shall see that this scheme,
e o T e ow which may vyield sensors with negative lobes, leads to
Figure 4 Bradford curves sharpened by constraineg-Ls sharper sensors than those formed under the assumption
sharpening with the sensor result constrained to non-negativityof strict non-negativity of the curves themselves.

(solid lines). Original colour-matching functions are also shown ~ Suppose we consider an RGB tripieformed from
(dashed lines). a colour signalC'()\) arriving at the camera sensors: if

E(A) is the illuminant andS () is the surface spectral re-

. . . N Flectance function corresponding to a particular pixel, then
much ‘energy’ is concentrated in the sharpening interva CN = EONS(A
1. Each sensot = 1..3 will employ a differenty. If & (_) = E C)' )(\ ) ’/\ (16)
measures the amount of energy contained irelative to P =2 CNQ (_ ) .
in the entire visible spectrum, we may define Suppose we collect all such RGB triplpsnto ann x 3
arrayR , and also collect all the colour signals intorar s

2
« ZW |2 (V)] (14) arrayC . Then we have

Ywla(MN[? R =CQ : a7
for each of thek = 1..p sensors. The second line of Ta- If the sensors themselves are change@tovia a matrix
ble 1 shows how unconstrained spectral sharpening with aansform, then we obtain
L, objective and kL norm, derived according to the min- =
imisation (5), behaves with respect to the goodness mea:
sure. We note that generally spectral sharpening greatl
improves the energy concentration.

Table 1 also shows results for the original Bradford  now we could set up a minimisation to achieve sharp-
curves and for the Bradford curves sharpened by constrair}a—ni '

ing the sensor result to non-negativity, according to the r;]g IE a glveg Etc(;)éval,lsub;ec;to non-ne;]gatwnyaﬂf
minimisation (13). such sharpene valu&'. However, this presents

. n unworkable set of constraints and in fact we can make
We see that the sharpened functions that result 1‘ror‘r§Se of convexity to work with convex hull points only.

constrained optimisation have good energy concentration . .
' Suppose we form the colour signal collectiGrby
better than or about the same as those for the Bradforgsing the reflectance spectra of the set of Munsell paint

e = 100

= T
here columrt ;, pertains to sharpening ttigh interva?.
he collection of RGB values changes to those seen under
€ New sensors:
R'=CQT =RT (19)

curves, even though the new curves are all-non-negativ

; - Chips, various natural object reflectances, Dupont dye re-
while every Bradford curve actually has some negative val flectances, and Macbeth ColorChecker reflectances. To

ges. Ehe unconstrained m|n|m_|satk|)on can, of conIJIrse, PrO%rm colour signals from these reflectances, let us use 11
t.uc? betterFenergy concentraﬂor; ecr? useﬂ;/v © 27OW Neiiiuminant spectra: A, D50, D65, D75, two fluorescent il-
ive lobes. For comparison, we also show the energy con: . - y y !

minants, and several measured SPDs.

centration for the MacAdam curves quoted by Pearson an Under each of the illuminants the set of calculated

Yule [6]. ,
. GB's forms a convex set [9].
Another useful feature of sharpened sensors is that an§ Let us impose the reasonable constraint that the non-

‘crosstalk’ between sensors is usually diminished. Let U eqativi ; -

4 . . gativity of RGB points corresponding to the overall con-
define crosstalk: between channels andj of sensors vex hull of the seR be maintained under a transform (19).
Q by the angle lqgtq ;| &Kis Wi

k = cos L { idj } (15) __ Suppose the boundary set of RGB value®is with
g i””qu R ann x s matrix, wheren is the number of samples in
wheregq ; is theith column of@ . The ideal value fok is  the boundary set. Our data-driven minimisation is thus
90°. Table 2 shows that the value for the crosstalk between min Z¢k [Q (Mt &]”

channels is generally improved, using sharpening. with constraints
In the next section we see that in fact we neednothave (S~ 1Q (\)t4]* = 1, L, normalisation (20)
positive sensors in order to have positive transformed-RGB Rtp >0 non-neg. RGB values

values, with even better results. Here we use and.norm, withy = 2.

5. Data-Driven Optimisation The sharpened sensors that result from this optimisa-
Above, we successfully found positive sensors by contion are displayed in Fig. 5.
straining the curves themselves. However, in applications The energy concentration is shown as the last line of
all we actually require is that transformed RGB values beTable 1 and is seen to be the best found using constrained
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constrained optimisation gives the best results for sharpen-
ing, but results in curves with negative lobes. An optimisa-
tion based on constraining only transformed RGBs, rather
than the curves themselves, does best for a constrained
sharpening, delivering almost as good results as for un-
constrained sharpening but without the penalty of negative
colours.
N Note that the types of optimisation reported here can be
applied to sensor systems of any dimensionality, although
RN\ results are reported here only for the 3—band human sys-
tem.

In a sense, the constrained-coefficients and
constrained-sensors techniques presented here are a
W m w w w W natural completion to the work of MacAdam, and Pearson
Figure 5 Sensors sharpened by a data-drivenL, sharpening ~ @nd Yule [6]. The main advantage of using an optimisa-
with transformed convex hull points constrained to non-negativitytion, with positivity, that maximises energy concentration
(solid lines). Original curves are also shown, dashed. in desired sharpening intervals is that the process of mak-

ing positive linear combinations of the colour-matching

L ) curves is guided not by simply decreasing crosstalk or
optimisation. Interestingly, the sensors themselvesate making the most narrow curves, but by the practical
all-positive. The data-driven sharpening results in sensorgecessity of sharpening within specific areas of the visible
that are similar to the unconstrained ones of Fig. 3, bU%pectrum.

produce positive RGB's. However, the data-driven approach, with an RGB con-
Thus we are left with the outcome that, for the sensorsstraint, is shown to be best overall, delivering almost as
examined here, a data—driven sharpening that does not ignod sharpening as the best possible, but with none of the
sist on non-negative sensors, but only on non-negative segrawbacks. This being the case, we wonder whether these
sor response values, gives the best sharpening. curves would lead to more accurate chromatic adaptation
From the results of Tables 1 and 2, we can state théhan the Bradford curves. We remind the reader that the
following: The Bradford curves, that have been trans-  |atter were derived via a simple numerical fit fosimgle
formed via spectral sharpening with positivity, have  single set of corresponding colour data. There is no good

superior energy concentration and crosstalk than the  reason to suppose they are optimal in any sense.
original curves.
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