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Gamut boundary determination
using alpha-shapes
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Abstract
This paper proposes a solution to the problem of find
the boundary of the gamut of a color printing device or
a color image. A surface triangulation of a set of points
the color space is computed using an alpha-shape, w
is a generalization of a convex hull applicable also to n
convex solids. The desired level of detail can be control
by means of an alpha parameter. A method for selec
the suitable value of this parameter is proposed.

Introduction

A color gamut is a delimited region in color space, co
taining colors that are physically realizable by a given d
vice or that are present in a given image. Knowledge of
color gamut surface is useful for many color science-rela
tasks such as visualization, gamut volume calculation,
deciding how colors outside the color gamut should be
produced.

Approaches to reconstruction of the gamut surface
be divided into two groups: colorant space methods, wh
use the information about the connectivity in a device co
space; and geometric methods, which are based only
set of point coordinates in a device-independent (or col
metric) color space such asCIELAB or CIECAM97s.

The colorant space methods are based on an assum
that a color space point lies on a surface of the gamut w
at least one of the colorant coordinates attains its minim
or maximum value (Rolleston, 1993). Such identified s
face points can then be connected to form a mesh des
ing the whole surface of the gamut. The resulting bou
aries are called physical boundaries. When there are m
than three colorants involved, this usually involves comp
ing the gamuts of the three-colorant subprocesses and
finding their union.

In a method described by Braun and Fairchild (199
the surface points identified in the colorant space are c
verted to the cylindricalCIELAB coordinates and projecte
on the L*h* plane. The points were triangulated usi
neighborhood information from the colorant space. T
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obtained gamut surface is represented by a matrix spec
ing the maximum chroma value attainable for given ligh
ness and hue. This technique assumes that for each poi
the gamut boundary there is at most one chroma value
a given combination, which is true for most typical print
gamuts but is not satisfied by some image gamuts.
corners and edges of the gamut may not be represente
curately because of the discrete location of the grid poin

Other authors used the characterization data (pair
corresponding colorant space and color space values
create a device model which then is employed for deri
tion of the gamut surface. This requires making additio
assumptions about the behavior of the device and hence
pends on the physics of the printing process, but in ret
provides a method for removing some measurement n
from the data and a possibility to create analytical rep
sentations of the gamut.

Mahy (1999) used the device characterization data
build a number of localized three-dimensional Neugeba
models. These models are analytically inverted to prod
a set of closed contours situated on planes correspon
to constant lightness values in the color space. The c
gamut contours of an n-colorant process for specific s
faces are determined as envelopes of contours of al
three-ink subprocesses.

Herzog (1998) proposed to represent the gamut by
analytical function based on a distorted cube. This p
vides an easy method of calculating the maximum chro
for any combination of lightness and hue but limits app
cability of the method to cube-shaped gamuts.

As an alternative to colorant space methods, the g
metric approaches work for any number of colorants a
without knowledge of the colorant space data or the
vice model. Therefore they can be used for construction
gamut surfaces for arbitrary data sets such as measurem
of targets with unknown underlying colorant specificatio
or for the set of colors present in an image. Similar to c
orant space methods, many color space points are ne
to describe the gamut surface precisely.

Mahy (1998) observed that for some printing proces
certain colorant combinations result in colors that fall o
side the region delimited by physical gamut boundari
This phenomenon is caused by the presence of region
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non-monotonic mapping between the colorant and the c
spaces which give rise to so-called natural boundaries
responding to the local extrema of these mappings. T
necessary condition for this to occur is to have some c
orant combination inside the gamut produce the same c
as some colorant combination from the physical bounda
The problem of natural boundaries which is very difficu
to solve using colorant space methods can be addresse
geometric techniques by ensuring that the used color p
set covers also the regions inside the colorant hypercub

One simple geometric approach is to use a convex
of the data set as the gamut surface. Unfortunately, in p
tice, non-convex (concave) surfaces are common in de
gamut boundaries, and the convexity assumption usu
leads to an overestimation of the gamut volume.

Balasubramanian and Dalal (1997) attempted to fix t
deficiency by “inflating” the data set before computing
convex hull in such a way that the concave surfaces bec
convex for the purpose of generating the mesh. The dis
vantage of this approach is the heuristic character of
method requiring precise selection of the center point a
three parameters. This limits the method’s applicability
printer-like gamuts. Over-inflation of the gamut may res
in interior points being identified as surface points.

In this paper we present a new geometric method ba
on the alpha-shape of the set of points.

Alpha shapes

The concept of alpha-shapes developed by Edelsbru
and Mücke (1994) formalizes the intuitive notion of “shap
for spatial point sets. The alpha-shape is a mathematic
well-defined generalization of the convex hull and is a su
graph of the Delaunay triangulation. Given a finite po
set, a family of shapes can be derived from the Delau
triangulation of the point set; a real parameterα controls
the desired level of detail. The set of all real alpha v
ues leads to a whole family of shapes capturing the
tuitive notion of “crude” versus “fine” shapes of a poin
set. Alpha-shapes have been used in scientific compu
and engineering for a variety of purposes, such as mole
lar modeling, modeling and examination of tissue featur
CAD/CAM solid surface reconstruction, mesh generati
and three-dimensional morphing between two shapes.

In three-dimensions the alpha-shape consists of m
possibly disjoint, simplices, i.e., tetrahedra, triangles, ed
and points. Forα = 0, the alpha-shape is identical to th
original set of pointsS, and forα = ∞, the set of all trian-
gles in an alpha-shape is equal to the convex hull ofS. A
simplex belongs to the alpha-shape ofS when there exists
a sphere of radiusα which does not contain any points ofS

and which has the property that all vertices of this simp
lie on its boundary.
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For our purposes we are using only tetrahedra and tr
gles of the alpha-complex. Tetrahedra are used for volu
computation. For gamut surface definition we use a sub
of an alpha-shape consisting of all regular triangles, i
triangles which bound some tetrahedra which are also
of an alpha-shape, which we denote as an alpha-surfac

In practice the computation of the alpha-surface sta
with finding the Delaunay triangulation of the point setS,
which is a triangulation of the points inS such that no tetra-
hedron contains a point ofS in its circumsphere. This re
sults in a set of tetrahedra and convex hull triangles. E
face (triangle) is shared by exactly two tetrahedra or i
convex hull triangle bounding one tetrahedron. A triang
belongs to the alpha-surface when the value of the para
terα is between the radii of the smallest circumspheres
neighboring tetrahedra.

These concepts are illustrated for a two-dimensio
case in Figure 1. An interactive demonstration is availa
on the Internet (B́elair, 1997).

Sorted radii of the smallest circumspheres of all tet
hedra form a so calledα-spectrum. As the parameterα is
increased, the alpha-shape changes only at values be
ing to theα-spectrum, and therefore it is possible to crea
an ordered collection of alpha-shapes. In such a collect
alpha-rank denotes an index of a specific alpha-shape.

An important issue when using alpha-surfaces is se
tion of an appropriate value for theα parameter. When
alpha-shapes are applied to the device gamut surface re
struction we can make additional assumptions that m
this task easier. The minimal useful value ofα, which
we will denote byα∗, is provided by the condition that al
tetrahedra enclosed by the alpha-surface must belong to
alpha-shape. This corresponds to the intuitive notion t
the gamut should not have any voids (regions in a sh
that cannot be accessed from the outside).

Another requirement could be for the alpha-surface
consist of a single connected component. Since all tri
gles in an alpha-surface are regular we can determine
number of connected tetrahedral components by check
connectivity of a graph formed by the edges of the alph
shape.

The alpha-surface obtained forα∗ will sometimes be
unnecessarily ragged as a result of not including tetrahe
located close to the surface. On the other hand, overly la
parameter values will result in overestimation of the gam
volume by hiding some surface concavities. Therefore,
optimum value ofα, especially for irregular image gamuts
is best determined experimentally, preferably using int
active visualization tools.

Results

We developed a visualization package inVRML 2.0 and
JavaScript which allows us to interactively select the va
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a.

α = ∞

b.

α = 0.35

c.

α = α∗ = 0.208

d.

α = 0.15

Figure 1: A family of two-dimensional alpha-shapes for differe
values ofα. Dashed lines show the Delaunay triangulation of t
set of points and a thick line is the edge component of its alp
shape. The disk in the right corner has radiusα. The first alpha-
shape (α = ∞) is identical to convex hull and the disk is a hal
plane.
ev-
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Figure 2: Alpha-surface of the Lexmark Optra Color 45 inkje
printer based on IT8.7/3 chart measurements.

of α and display the resulting alpha shape. Figure 2 sho
an example of theVRML visualization of the gamut of an
inkjet printer. Our user interface limits the allowed va
ues ofα to a range fromα∗ to infinity. This allows us to
store only the triangles for which the upper limit of vis
bility is larger thanα∗. A related software application cre
ated by the authors of the alpha-shape concept is publ
available from National Center for Supercomputing App
cations (1996).

Figure 3 presents several signatures of the alpha-sh
of a laser printer, that is, plots of some scalar values ch
acterizing the family of alpha-shapes in function of the
rank. These plots are useful in selecting the most app
priate value ofα. We can observe that small changes
the α parameter above theα∗ threshold cause only grad
ual changes in the volume and therefore are not critical
the accuracy of surface reconstruction. The number of
angles roughly corresponds to the amount of detail in
surface.

The volume of the gamut, usually expressed in cub
CIELAB units, can be used as a single figure-of-merit f
comparison of different printers. In (Balasubramanian a
Dalal, 1997) this quantity was computed by summing t
volumes of tetrahedra formed by vertices of each surfa
triangle and a common point known to be inside the gam
and visible from all the triangles (CIELAB point [50, 0, 0]
often satisfies this condition). We propose to perform t
calculation by summing the volumes of all tetrahedra whi
belong to the alpha-shape. This method does not depen
the existence of such a central point and can be applie
arbitrary gamut shapes including shapes consisting of s
302
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a.
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Figure 3: Signatures of a laser printer gamut alpha-shape as a function of the alpha-rank: a. volume (in thousands of cubicCIELAB

units), b. surface area (in thousands of squareCIELAB units), and c. the number of triangles. The vertical line shows the alpha-r
corresponding to the valueα∗ for which the alpha-surface consists of a single component.
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eral disjoint components which are common in the cas
image gamuts.

By an extension of this method, one can calculate
approximate percentage of colors shared by two differ
gamuts. The volumes ofV(A) andV(B) of alpha-shapes
based on the two separate data setsA andB and the volume
of the combined data setsV(A∪B) are computed. Then th
volume of the common part can be found from the equa
V(A ∩ B) = V(A) + V(B) − V(A ∪ B). One possible
application of this method is to find the percentage ofCRT

colors that can be reproduced on a specific printer.
Figure 4 presents the results of applying our gamut s

face construction method to a set of colors used in an
age. The parameterα was chosen to be less thanα∗ in
order to better emphasize lack of light blue colors in
image. In this case there is no central point from which
surface triangles are visible and therefore the gamut
face and its volume cannot be computed by the method
scribed in (Balasubramanian and Dalal, 1997). This a
makes it impossible to represent this gamut surface a
function of lightness and hue using method of Braun a
Fairchild (1996).

Conclusions

The described method enables creation of approximate
alytical descriptions of the surfaces of the gamuts of co
printing devices and color images. This facilitates co
parisons of gamuts, computation of simple figure-of-me
quantities related to the quality of the device such as a
ume of a gamut, and performing out-of-gamut mappin
using geometric techniques. Many printers exhibit natu
color gamut boundaries which exceed the physical colo
boundaries and therefore it is important to use geome
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methods of gamut surface construction to get an accur
estimate of the gamut boundary and volume.

As an extension of our method it is possible to constru
a shape that has different levels of detail in different par
of space by assigning a weight to each point where a la
weight favors and a small weight discourages connectio
to neighboring points. The resulting object is known as th
weighted alpha shape (Edelsbrunner, 1992). If all weigh
are zero, it is the same as the original, unweighted alp
shape.
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Figure 4: Gamut of the Standard Color Image Data (SCID) image
“N1A: Portrait”: a. image; b. histogram of colors present in the
image inCIELAB space (larger spheres correspond to colors a
pearing more frequently); c. alpha-shape of the set of points fr
subfigure b. forα < α∗.
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