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Abstract _ _ _
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In digital cameras, noise in the raw captured image _\/( )2 ( )2 ( )2 )
significantly influences the potential color fidelity of the IGout =y B219Rin ) *\8220Gin/ *\B2398Biin ©)

final processed image. This occurs because any 0B out =\/(a310mn )2 +(a320<3 in )2 +(a33UBin )2
amplification of the color values in an image, will also ' ’ ' ’

amplify the noise in the image. In order to control the  Generally, the matrix coefficients will be designed to
visibility of noise in the final processed image, the cameraow sum to unity to preserve the neutral balance of the
designer is frequently forced to constrain the tuning of thémage. Many digital camera systems will require the
color correction operation in a way that reduces the finaliagonal elements to be greater than or equal to one, to
color fidelity. By properly noise cleaning the original image achieve optimal color correction. As a consequence of the
data, the amount of noise in the input image to the colafliagonal coefficients being greater than or equal to one the
correction step can be greatly reduced. Consequently, thgitput will have at least as much noise as the input because
amount of noise in the output is also reduced. If the amouns the contributions of the diagonal matrix terms. Non-zero
of noise in the color-corrected image is reduced well belowsff-diagonal matrix terms will increase the amount of noise
the acceptable level, then more aggressive corrections cgi the output even more. These additional noise
be achieved without unacceptably high amounts of noisgontributions to the output can be minimized by keeping the
appearing in the final processed image. These aggressikgagnitudes of the off-diagonal matrix coefficients as small
corrections can, in turn, be used to produce higher colads possible. However, as the off-diagonal matrix

fidelity in the finished image. coefficients are reduced in magnitude, the color correction
. matrix is forced towards becoming the identity matrix if the
Introduction row summing to unity condition is maintained. As a result,

the color matrix cannot produce as complete a correction of
In digital cameras, noise in the raw captured imagehe color values as might otherwise be desired. Therefore,
significantly influences the potential color fidelity of the the consequence of reducing noise in the output signal is
final processed image. This occurs because any amplifiikely to be a reduction of color fidelity of the final image.
cation of the color values in an image, will also amplify theExample images illustrating this compromise are found on
noise in the image. In order to control the visibility of noisethe CD-ROM. Image 1 was created using a color correction
in the final processed image, the camera designer is frenatrix that reproduced the colors of the original with
quently forced to constrain the tuning of the color correctiormaximum accuracy. Close examination reveals a significant
operation in a way that reduces the final color fidelity. amount of noise in the image. By reducing the
As an example of the interactions of noise and cologggressiveness of the color matrix, an image can be created
fidelity, consider a color correction achieved with a simplewith reduced noise visibility. To this end, image 2 was
3 x 3 matrix (Eq. 1). created using a color matrix that reproduces the colors of
ERoutH Efin a, as %Rm H the scene with less accuracy, but also less visible noise.

[Gout (F o1 Az a6 O 1) Noise Cleaning Before Interpolation
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, ) The fundamental solutions to this problem are to improve
If we assume that each color channel contains simplepe image capture hardware to reduce the amount of noise
additive Gaussian noise, then the noise in the output can Rgected into the image in the first place, adjust the spectral
related to the noise in the input by the familiar relationshigensitivities of the color capture channels to minimize the
given in Eq. 2. required color correction, and to improve the capture
conditions of the image, e.g., make sure the scene is
properly illuminated. Assuming as much as can be
practically done along these lines has occurred, it is up to
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the image processing chain to address the resulting noise in En 010 1H Bl 010 1H
the image. The main solution available to the image 0 0 0 0 00 0101 00
processing chain is to noise clean the image data prior to 1 0 1 0
color correction. 5% 01017 E%l 01015

There are many well-known noise cleaning algorithms. 0 0 0 0 0O 0 101 00
However, simply placing a garden-variety noise cleaning %L 010 1% %1 010 1%

operation (just prior to color correction) will probably not
lead to an optimum solution. Because most digital cameras (a) (b)
have only a single sensor covered with a color filter array,

color filter array interpolation must be performed prior to Bl 010 15
color correctiorf’ Depending on the nature of the color 0 00 0 00
filter array interpolation algorithm, there is a potential for i% 01 0 10
this operation to introduce noise amplification and it may 9 O
also introduce patterned noise artifacts into the image. D ooo OB
Therefore, the best place to perform noise cleaning is E;ll 010 1p

clearly at the very beginning of the image processing chain.

The challenge of noise cleaning at the beginning of the ©
image processing chain is that the color information of the i ,
image is encoded into a single plane of image data by tHdaure 2 Potential blur kernels for Bayer pattern color filter
color filter array. Hence, for any given color channel, the¥ray neighborhoods centered on red (a), green (b), and blue (c)
data is sparsely populated in a spatial sense. As a result, f&els-
chosen noise cleaning algorithm must be aware of the color
filter array pattern to avoid mixing pixel information from Figure 2 shows potential blur kernels that could be used
different channels. Also, due to the sparse sampling of thg produce a noise cleaned pixel value for the central pixel
color channel data, simple linear convolution operationsnh each neighborhood. The word “potential” is used because
may not perform as well as when applied to fully populatedhe sigma noise filter will selectively change one or more of
image data. Finally, because a full-color rendering of theéne ones in a given blur kernel into zeros based on the local
image does not exist at this point of the image processingatistics of the pixel neighborhood. Images on the CD-
chain, the data must be treated as three separate gray sq®M illustrate the improvements realized by this noise
images. Color transformation into other spaces, such asggeaning. The raw data used to create image 4 was first
luminance — chrominance space, is not possible. One igeaned using a sigma noise filter and then passed to the rest
forced to work in the capture color space of the camera.  of the image processing chain, using the less aggressive

Through a study of known noise cleaning algorithms, itcolor matrix of image 2. The visible noise in image 4 is
has been found that the sigma noise filban be adapted to significantly reduced the noise in compared to image 2. The
work well with color filter array image data. The resulting same noise cleaned data was used to create image 3, though

version of the sigma noise filter uses>bkernel arranged in this case the more aggressive color matrix of image 1 was
to correspond to the color channel being processed at thged.

moment. As an example, if the Bayer color filter array

patterri is being used, the resulting® pixel neighborhoods Noise Cleaning During Interpolation

about each of the three color channels as shown in Fig. 1.

Even after noise cleaning the data prior to color filter array
interpolation, additional noise cleaning can be performed

R G R G R G RG R G . . . . .
CBCB G B GBGB during interpolation. Adaptive CFA (color filter array)
interpolation algorithnf§ can make decisions on a pixel
R G R G R G RGRG neighborhood by neighborhood basis as to the best
G B G B G B G BG B orientation in which to perform interpolation. Consider the
R GRG R G RGRG pixel neighborhood in Fig. 3.
@) (b)
Ry
B G B G B
G RGRG G
B G B G B RS C':‘4 R5 G6 R7
G RGRG Ce
BGBG B Ro
(c) Figure 3. Color filter array interpolation neighborhood for

Figure 1. Bayer pattern color filter array neighborhoods centeredcomputing a green pixel value.
on red (a), green (b), and blue (c) pixels.
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In order to estimate the missing pixel valug @ixel lllustrative Images on the CD-ROM
values in either the horizontal or vertical directions can be
used. Assuming correlation between color planes can be eXe summarize the images on the CD-ROM, it is desired to
ploited, the two possible estimates are given in Egs. 3 and groduce an image using an aggressive color matrix that does
an accurate job of reproducing the colors of the original

Gs = Ca*Gs | 2R R ~Ry) (3)  scene. This results in image 1. Not being pleased with the
2 16 amount of noise in the image, the aggressiveness of the

color matrix is reduced, producing image 2. The noise is

G = Gy +Gg 3(2Rs ~ R, ~ Ry) (4)  now less visible, but the color fidelity is also reduced. The
2 16 first step to reduce the need to make this tradeoff between

se visibility and color fidelity is to noise clean the ori-
al CFA data using a sigma noise filter. This produces
age 3 with the more aggressive color matrix and image 4
with the less aggressive color matrix. If the visibility of the
Moise in the image is still too high, additional noise cleaning
is performed during the CFA interpolation operation. This
n _ Gy, +G, +Gg +Gg produces image 5 with the more aggressive color matrix and
Gs = 4 ®) image 6 with the less aggressive color matrix. These images
o N ) ) _ ~also incorporate sigma noise cleaning of the original CFA
Similar opportunities exist for noise cleaning duringdata. Up to this point, the noise being addressed was mainly
other stages of the color filter array interpolation processchannel independent noise. Since the CFA interpolation
Image 6, found on the CD-ROM, illustrates theprocess produces full-color image data, chrominance noise
improvement had by applying the additional CFAmay now be targeted by transforming the image to a
interpolation noise cleaning step to the image processingminance — chrominance space and aggressively cleaning
chain. (Sigma noise filtering is also performed.) The colokhe chrominance channels. Cleaning the chrominance chan-
matrl)? U_SGd In Image 6 |S. the same less aggreSSIVe matrrlfé|s of images 1 and 5 produce images 1A and 5A. Both
used in images 2 and 4. Differences between images 4 angrfages 1A and 5A are largely devoid of any visible noise,
are most easily seen in the orange-yellow patch of thgeaning both images are probably acceptable. Since image
target. Image 5 also incorporates the CFA interpolatioma was created using a color matrix that produces an image
noise cleaning step, while using the more aggressive colgiith higher color fidelity, this is the image of choice. A
matrix used in images 1 and 3. Again, the largestinal comparison between image 2 (no noise cleaning, lower
improvements are seen in the orange-yellow patch of thgolor accuracy) and image 5A (noise cleaned, higher color
target. accuracy) shows a significant improvement in the ability to
produce acceptable images with higher color fidelity.

These equations are predicated on the assumption thn?]I
some significant amount of scene detail can be detect
within the pixel neighborhood. If detection of significant
spatial information is weak, then the interpolation ca
switch to a noise cleaning mode, as given in Eqg. 5.

Noise Cleaning After Interpolation

_ Conclusion

Because of the requirement to treat each color channel as a

separate gray scale image, most of the improvements asg a result of properly noise cleaning the original image
made in the luminance information of the image. Once @ata, the amount of noise in the input image to the color
full-color image has been rendered by the image processin@rrection step is greatly reduced. Consequently, the
chain, transformation into different color spaces can be useghount of noise in the output is also reduced. If the amount
to allow for easier separation of noise from genuine scengf noise in the color-corrected image is reduced well below
detail. In particular, transformation into a luminance —the acceptable level, then more aggressive corrections can
chrominance space allows fairly aggressive noise cleaninge achieved without unacceptably high amounts of noise
to occur in the chrominance channels of the |mage Wh|lgppearing in the final processed image_ These aggressive

leaving the luminance data untouched. On the CD-ROMgorrections can, in turn, be used to produce higher color
image 1A is an example of such additional imagefidelity in the finished image.

processing. Image 1A was created from image 1 by
transforming image 1 into CIELAB space, aggressively References
cleaning the a* and b* channels and then transforming the
cleaned data back into the original RGB space. The cleaning 3. s. LeeComputer Vision, Graphics, and Image Processing
techniques used on the chrominance channels were textbook 24, pg. 255. (1983).
implementations of morphological noise filters and the2. J. E. Adams, Design of Practical Color Filter Array
sigma noise filter. The same chrominance noise cleaning Interpolation Algorithms for Digital Cameras, Part Rroc.
was applied to image 5 to produce image 5A. The resulting 1998 Int. Conf. Image Proces$, pg. 488. (1998).
noise visibility in images 1A and 5A is greatly reduced from3. J. E. Adams, Design of Practical Color Filter Array
images 1 and 5. Interpolation Algorithms for Digital Camera®roc. SPIE
3028 pg. 117. (1997).
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