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Abstract

This study introduces new models an d mathematica l formu-
lations  describing the light  scattering  and ink spreading phe-
nomena. Based on thes e new theoretical tools , the spectra of
100 real paper samples produced by two ink-jet printers were
computed with an average prediction error of about 
in CIEL AB.

Introduction

Several physical phenomen a influence colours rep roduced by
ink-jet printers . This makes accurate  colour prediction very
difficult. The dot gain effect is generally considere d to have
the largest impact  on colour deviations. Dot gain is cause d by
light scatterin g or by ink spreading or both together. 

Intensive investigations on opt ical dot gain  (Yule-
Nielsen effect) have been made,2,10,25 but the resulting pre-
diction models are often very complex. We propose a global
approach incorporatin g all physical contributing phenomena
into a single model using a mathematical  framework based on
matr ices. We will show that classical resu lts (for example the
Clapper-Yule re lation) correspond  to particula r cases of our
model. 

According to ou r experience in ink-je t prin ting, light
scattering is n ot the only process which induces colour devi-
ations . When ink drops  are printe d over each other or  just
overlap partially, an ink spreading process takes place which
also modifies the printed colour in  a significan t way. A model
is proposed and applied to predict accurately  the spectra of
real samples produced with two inks on two different ink-jet
printers. 

Matrix form of the Kubelka-Munk model

Let us consider a reflector made of a reflecting substrate o f re-
flectance  in optical contact with a light absorbing  and
light scattering medium o f thickness   (see Figur e 1). Kubel-
ka and Munk16 proposed a reflection model based on two
light fluxes:  orien ted downwards and   orien ted up-
wards.
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The variation of   and  when they cross an in fini-
tesimal layer of thicknes s  is given by the system of linear
differential equations:

(1)

where  is the light absorption coefficient and   the light
scattering coefficient of the medium. Note tha t in a transpar-
ent medium  equals   and the differentia l equation (1 ) leads
to Beer’s law. 

The system in equation (1) can be written in matrix form:

(2)

This kind of matrix differential equation has a well known so-
lution which is given by the exponential of the matrix.4 By in-
tegrating the equation between  and  we get: 
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Figure 1. An ink absorbing medium of thickness  is in optical 
contact with a substrate of reflectance . This medium is 

divided into parallel layers of infinitesimal thickness . Two 
fluxes are considered:  oriented downwards and  

oriented upwards.
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(3)

where  and  are the intensities of the fluxes  and  at
. Note that the exponential of a matrix  is defined by

the following power series:

(4)

The ratio  is called the body (or true)
reflectance19 of the analysed sample. It corresponds to an in-
ternal reflection coefficient which does not take multiple in-
ternal reflections into account (see following section). From
equation (3) and the boundary condition , we
can derive by algebraic manipulations all the well-known re-
sults of the Kubelka-Munk theory which are listed in the lit-
erature.6,8,14 

Model of high quality paper and Saunderson 
correction

In the present study, we consider high quality ink-jet paper
consisting of an ink-absorbing layer in optical contact with
the substrate which is a diffuse white reflector of reflectance

. This reflector is supposed to be Lambertian17 and is nev-
er in contact with the inks. Since the transparent coating has
a refractive index  different from that of air, multiple inter-
nal reflections occur13 as shown in Figure 2. This phenome-
non significantly increases the optical density of the ink
containing layer. Traditionally, this is taken into account by
applying the Saunderson correction18 to the computed spec-
trum. In this section, we write the Saunderson correction in
matrix form, to be applied to equation (3). 

Let us denote by  the incident flux on the external sur-
face of the paper and by  the flux emerging from the paper.
Let  be the fraction of diffuse light reflected by the air-coat-
ing interface (external surface of the paper), and let  be the
fraction of diffuse light reflected by the air-coating interface
(internal surface of paper). The values of  and  depend
only on the refractive index of the transparent coating. Judd12

has computed their numerical values for a large number of re-
fractive indices.

i X( )

j X( )

K S+ S–

S K S+( )–
X 0–( )

 
 
 

exp i 0( )

j 0( )
⋅=

i 0( ) j 0( ) i j
x 0= M

M( )exp
M( )i

i!
-----------

i 0=

∞

∑=

ρ j X( ) i X( )⁄=

j 0( ) Rg i 0( )⋅=

Rg

n

Figure 2. Multiple internal reflections caused by the interface 
between the air and the ink-coating.
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The balance of the fluxes at the air-coating interface, as
shown in Figure 3, leads to the following system of equations
for , the incident flux below the air-coating interface and
for , the emerging flux above the air-coating interface:

(5)

Assuming that the refractive index of the coating is con-
stant over the whole visible range of wavelengths,  and 
are also constant. Hence, equation (5) can be written in the
following matrix form:

(6)

The Saunderson correction is obtained by combining equa-
tion (6) and equation (3):

(7)
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Figure 3. External and internal reflections of the upward and 
downward fluxes on the air-coating interface.
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We denote the elements of the product matrix by , ,  and
. These coefficients and the boundary condition

 allow the calculation of the reflection coeffi-
cient :

(8)

This equation allows us to compute the reflection spec-
trum of a light-absorbing and light-scattering medium in op-
tical contact with a substrate of known reflectance . If we
develop the product in equation (8) algebraically, we obtain
the famous Saunderson corrected reflection formula.27 The
interesting aspect of our present approach is the matrix for-
mulation of equation (7) which gives a better overview of the
modelled system. Instead of using several functions incorpo-
rated within each other, the analysed sample is simply mod-
elled by the product of two matrices.

New mathematical framework for light 
scattering in the substrate

The Kubelka-Munk model presented in the previous sections
assumes that the ink-absorbing layer is uniform, i.e. that it
contains the same amount of dye everywhere. In halftoned
prints, this is no longer true because ink was not applied uni-
formly over the whole surface. Due to light scattering in the
substrate (paper), a photon can penetrate the paper through an
inked region and leave the paper through a non-inked region. 

In a first step, we generalise the previous model by taking
only two types of regions into account: inked and non-inked.
Furthermore, since the ink absorbing layer is very thin (about

), we assume that the exchange of photons between sur-
face elements only takes place in the substrate. We also as-
sume that each surface element behaves according to the
Kubelka-Munk model described previously.

t u v
w
j 0( ) Rg i 0( )⋅=

R

R
j
i
-

t Rg u⋅+

v Rg w⋅+
-----------------------= =

Rg

10µm

Substrate:

Interface

Infinitely

j0

i0

j1

i1

diffuse
reflector

thin layer

Air

Figure 4. Model of the printed surface. On top of the substrate, 
each surface-element is considered to be a uniform layer which 
behaves according to the Kubelka-Munk model. The exchange 

of photons between different regions takes place in the 
substrate.
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Let us now consider such a surface having only two dif-
ferent inking levels. As for the Kubelka-Munk model, we de-
fine for each inking level two light fluxes:  oriented
downwards and  oriented upwards. The index  takes the
value 0 for the non-inked region and 1 for the inked region
(see Figure 4). 

The matrix equation (2) can be extended in order to take
several inking levels into account. For two inking levels, the
equation can be written as follows:

(9)

where , ,  and  are respectively the absorption and
scattering coefficients of the non-inked medium and the
inked medium. By integrating equation (9) between 
and  we get:

(10)

Note that the definition of the matrix exponential is given in
equation (4).

In order to take into consideration the multiple internal
reflections, the Saunderson correction must also be applied
here. Note that in our case the ink is inside the medium and
not on top of it. Hence the interface between the air and the
ink absorbing medium is the same in non-inked regions and
in inked regions. Therefore, from equation (6) we can directly
derive the resulting correction matrix: 

(11)

The key to our model lies in the way light scattering is
expressed mathematically. We assume that the exchange of
photons only takes place in the substrate. In consequence, the
light scattering only affects the boundary conditions at

. This implies that the upwards oriented fluxes 
and  depend on both downwards oriented fluxes ,
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 and the reflection coefficient  of the substrate. This
can be written in a general way under matrix form:

(12)

where the coefficient  represents the probability of a pho-
ton entering through a surface element having the inking level

 to emerge from a surface element having the inking level
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. This probabilistic approach was introduced by Arney.1,2

Since we deal with probabilities, the sum of the coefficients
 belonging to the same line of the matrix in equation (12)

must equal 1. The computation of the scattering probabilities
 will be addressed in the next section.
Now we can put all elements together and write the ma-

trix equation of our new prediction model. By combining
equations (10), (11) and (12) we obtain relation (13).

u
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The first matrix of equation (13) represents the Saunder-
son correction, the second matrix corresponds to the Kubel-
ka-Munk modelling of the ink absorbing layer and the third
matrix models the light scattering in the substrate.

After computing the matrix products in equation (13), we
can derive a relation which expresses the emerging fluxes 
and  as linear functions of the incident fluxes  and . 

Since the incident light has the same intensity on inked
and non-inked regions, we have . Let  be the
fraction of area occupied by inked regions, and 
be the fraction of area occupied by non-inked regions. The re-
flection coefficient  of the whole surface is given by:

(14)

Let us consider the particular case in which the average
lateral light scattering distance is great compared to the size
of the halftoning element. In this case, for any inking level ,
the probability  equals the fraction of area  occupied
by the inking level : 

 and (15)

By introducing the relations (15) in equation (13) and as-
suming that , , we obtain from expression (14)
the well-known Clapper-Yule5 relation: 
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where . Note that this calculation was done
with the help of a mathematics software package.

In another particular case, lateral light scattering can be
neglected. Hence, the probability of a photon being scattered
in a region with a different inking level equals 0. This implies
that  and  for . In other words, the last
matrix of equation (13) is an identity matrix. Introducing this
in relation (13) and assuming , , ,

 leads to the Murray-Davis relation:15

(17)

where .

Simplified light scattering model 

There are several methods which allow the computation of
the scattering probabilities . Most of these methods use a
point spread function (PSF) which is generally assumed or
measured empirically. The convolution between this function
and the halftone pattern leads to the surface reflectance26

from which the scattering probabilities are deduced. Further
advanced models calculate the PSF based on a physical light
scattering model.24 Since these methods imply the use of op-
erations such as Fourier transforms, the computation is cum-
bersome. Finally, the scattering probabilities  can also be
computed by a numerical simulation based on a simplified
light scattering model.10 

For our purpose, the last method is the most adapted: a
high resolution grid models the printed surface. The value of
a grid point corresponds to the local amount of dye (see Fig-
ure 5). The density profile of an isolated ink impact was
measured under a microscope and approximated by a para-
bolic function.7 The resulting ink impact model (see Figure 5)
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is used as a stamp. Wherever an ink drop hits the surface of
the printed media, the impact model is stamped at the same
location on the high resolution grid, where stamp overlapping
is additive. This gives an accurate numerical simulation of the
behaviour of ink printed on high quality paper. 

The fraction of area  is determined by counting the
number of grid points which belong to the same inking level

. The light scattering process can be seen as an exchange of
photons between a grid point and its neighbours. In this con-
text, the discrete form of the above mentioned PSF gives the
probability for an entering photon to emerge from another
grid point. According to Gustavson’s studies,11 this PSF can
be approximated by a function  which has a circular s
metry and a strong radial decay: 

(18)

Here,  controls the radial extent of the PSF. 

Figure 5. High resolution grid modelling the printed surface. The 
value of a grid point corresponds to the local amount of dye. Note 

that the density profile of an isolated ink impact is parabolic.
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The scattering probability  equals the weighted s
over the whole grid of points having the inking level  wi
a neighbour having an inking level . The weights of t
neighbours are given by our discrete PSF. 

A simplified model of ink spreading

In the printing process, inks are partially superposed in o
to produce new colours. Under certain circumstances,
overlap of the printed inks causes further spreading of 
dyes. This induces a significant dot gain and colour deviat
Note that the total amount of dyes remains constant throu
out the spreading process, and only the spatial distributio
changed. The complex interaction between the inks and
printed surface is strongly related to physical properties 
wettability and solvent absorption. As a consequence the 
behave differently on every surface. According to our exp
ence, the local amount of solvent and the state of the sur
(“wet” or “dry”) are the main parameters to take into accou
Printer and paper manufacturers try to minimize the unwa
ed ink spreading by developing special paper coating23

Nevertheless, ink spreading still induces significant colo
deviations which must be taken into account.

The ink spreading phenomenon can be modelled
modifying the size of the impact according to the configu
tion of its neighbouring drop impacts and the state of the 
face. Since the amount of dyes remains constant, the max
density  at the centre of the impact must decrease whe
area  of the impact increases: 

(19)

where  and  are respectively the area and the max
density at the centre of an isolated impact.

By experimenting on a particular sample, we found a
of empirical rules which are slightly different for each ink-p
per combination. First, we analyse the spreading of a d
printed on a dry surface by estimating under the microsc
the enlargement of the impact when it is in contact with an
creasing number of neighbouring impacts. Second, we e
mate the enlargement caused by an ink drop printed o
“wet” surface, i.e., where another drop was already prin
as a function of the number of neighbouring impacts. We 
served that the higher the number of neighbours covered 
ink, the stronger the spreading. A neighbouring impact co
posed of the superposition of two ink drops increases the
cal amount of solvent. This also influences ink spreading
to a lower extent. Those results were summarized as a s
ink spreading rules which give the enlargement accordin
the configuration of the ink drop impacts (see Table 2).

As shown in the previous section, high resolution gr
(one for each ink) are used to simulate the behaviour of
inks printed on the substrate. Each simulated impac
stamped on a high resolution grid and its size is modified
cording to our empirical ink spreading rules.
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Prediction results

In a first step this model was applied to monochromatic
patches. We predicted the spectra of 25 cyan halftoned sam-
ples generated with Bayer’s3 dithering method and printed
using an HP DJ560 ink-jet printer. Note that this device pr
coloured drops according to a hexagonal grid and the sh
of the drop impact is circular. All 25 samples were printed
J21 paper from MPA20 whose ink absorbing layer has a r
fractive index of . The ink spreading rules for th
ink-paper combination are given in Table 2 in the column
belled “HP”. The samples were illuminated with a tungs
light source and their spectra were measured using an 
grating sphere combined with a radiometer INSTASPEC
from Oriel.22 The samples were measured 24 hours after
ing printed. The same instrument was used to measure th
flectance of the paper in order to derive . The absorp
spectra of the cyan ink was measured on transparency 
the same ink absorbing layer using the same radiometer 
collimated light.

For good prediction accuracy, five inking levels are ta
en into account. This implies the use of larger matrice
equation (13). Furthermore, the grid point corresponds 
square surface element of . In accordance with O
tinen’s study,21 the extent of our discrete PSF has a radius
about . As a consequence, the value of  in equa
(18) is about . Note that at 300 dpi, the distance 
tween two dot centres is . The integration of the P
over the area of a neighbouring grid point gives the weigh
this point. 

Using our model and mathematical framework, we co
puted the spectra of the 25 halftoned cyan samples with a
erage prediction error of  and a maximal error 

 in CIELAB. An example of a predicted spectru
is given in Figure 6, and the results are summarised
Table 1. 

In a second step the model predicted the spectra of 
ples printed with two inks, cyan and yellow. We produc
four series of 25 samples i.e. a total of 100 samples. They
respond to the four combinations obtained by using two 
ferent halftoning methods with two different printers (havi
different inks and papers). The halftone methods used we
clustered dither algorithm with 33 levels of grey and Bayer3

dithering method. Two series were printed with an HP DJ
ink-jet printer on J21 paper from MPA.20 Two other series

Table 1: Average prediction error in CIELAB, root
mean square error and maximal deviation of predicted
spectra of the series of cyan samples printed with an
HP DJ 560C printer.

Series Average 
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were printed with an EPSON Stylus Color 900 ink-jet prin
on “EPSON glossy photo quality” paper.9 All samples were
measured with the same equipment used in the monochr
case.

The EPSON Stylus Color 900 printer was used in its 
dpi mode. It also uses a hexagonal grid for coloured inks,
its drop impact is elliptic. 

Table 2: Impact enlargement rules according to the
state of the surface and the configuration of the dot
neighbours. The enlargement is given in terms of area
percentage. The ‘*’ indicates that the rule in question
does not apply.

Surface Number of 
neighbours

Number of 
two-drop 

neighbours

HP EPSON

Dry >1 any 10% 10%

Wet 0 0 0% 32%

Wet 1 0 10% 32%

Wet 1 1 32% 32%

Wet 2 0 32% 32%

Wet >1 56% *

Wet >0 * 44%

Wet 5 >1 * 96%

Wet 6 0 96% 44%

Wet 6 2 140% 140%

Wet 6 189% 189%

Wet 6 6 82% 82%

360

450 500 550 600 650 700
nm

C=0, Y=143 dE=2.25

0

0.2

0.4

0.6

0.8

1

R

Figure 6. Measured spectrum (continuous line) and predicted 
spectrum (dashed line) of a halftoned cyan sample at level  

printed with an HP DJ560C. The prediction error is  
in CIELAB. (Note that level 0 means 100% ink coverage and level 

255 means 0% ink coverage).

143
E∆ 2.25=

3…5[ ]

3…4[ ]

3…5[ ]
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We simulated these samples on the high resolution grids
using the previously described ink spreading model and light
scattering model. As in the case of the monochromatic sam-
ples, the computer counted the grid points and their neigh-
bours in order to find the relative area  occupied by each
ink combination  and the scattering coefficients  (see in
the section “Simplified light scattering model”). Since fi
inking levels per ink are considered, a total of twenty f
combinations must be taken into account. The computatio
the reflection spectrum is the same as in the monochrom
case except that larger matrices are used in equation (13

The average prediction error between measured and
dicted spectra is about  and the maximal erro

 in CIELAB. Two examples are given in Figure 
and the results are listed in Tables 3, 4, 5 and 6. A sum
is given in Table 7. Note that when ink spreading is not ta
into account, the average prediction error is about 

au
u δu v,

E∆ 2.1=
E∆ 5=

E∆ 10=

450 500 550 600 650 700
nm

C=191, Y=63 dE=1.58

0

0.2

0.4

0.6

0.8

1

R

450 500 550 600 650 700
nm

C=191, Y=63 dE=1.75

0

0.2

0.4

0.6

0.8

1

R

Figure 7. Measured spectra (continuous lines) and predicted 
spectra (dashed lines) of one halftoned green sample (clustered 

dither) printed on two different printers. The patche is a 
superposition of a cyan halftoned layer (level 191) and a yellow 

halftoned layer (level 127). Note that level 0 means 100% ink 
coverage and level 255 means 0% ink coverage. 

a) Printed on an HP DJ560 C printer

b) Printed on an EPSON Stylus Color 900 printer
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Table 3: Bayer dither, printed with the HP printer.
Measured colour, predicted colour and colour difference
in CIELAB.

Levels C=255
a b L

C=191
a b L

C=127
a b L

C=63
a b L

C=0
a b L

Y=255 1. -3. 91.
1. -3. 92.
0.3

-22. -32. 72.
-24. -30. 72.
1.9

-41. -50. 58.
-39. -48. 59.
2.7

-47. -60. 50.
-45. -58. 51.
2.3

-47. -65. 46.
-47. -66. 45.
0.4

Y=191 1. 27. 90.
1. 25. 91.
1.5

-24. -4. 70.
-25. -4. 71.
1.6

-46. -23. 56.
-45. -21. 57.
2.4

-54. -30. 49.
-52. -28. 50.
2.2

-55. -34. 44.
-55. -32. 44.
1.9

Y=127 2. 49. 90.
2. 47. 90.
1.8

-29. 14. 67.
-32. 12. 67.
3.7

-51. -5. 54.
-48. -4. 55.
3.3

-57. -12. 47.
-56. -12. 48.
1.9

-53. -16. 44.
-57. -17. 44.
4.7

Y=63 4. 64. 90.
3. 62. 90.
2.3

-35. 25. 65.
-36. 23. 65.
2.7

-55. 7. 52.
-53. 6. 53.
2.5

-56. -1. 47.
-56. -2. 47.
1.5

-54. -6. 43.
-56. -8. 43.
3.2

Y=0 5. 75. 89.
4. 75. 90.
0.9

-41. 31. 61.
-43. 30. 62.
2.1

-54. 15. 51.
-58. 12. 52.
5.1

-57. 7. 45.
-58. 4. 46.
2.9

-55. 1. 42.
-55. 2. 42.
0.6

Table 4: Clustered dither, printed with the HP printer.
Measured colour, predicted colour and colour difference
in CIELAB.

Levels C=255
a b L

C=191
a b L

C=127
a b L

C=63
a b L

C=0
a b L

Y=255 1. -3. 91.
1. -3. 92.
0.2

-15. -24. 76.
-15. -24. 76.
0.9

-26. -39. 65.
-26. -40. 65.
0.8

-38. -54. 54.
-41. -55. 53.
3.

-47. -65. 46.
-47. -66. 45.
1.3

Y=191 1. 19. 91.
1. 20. 91.
1.2

-16. -5. 75.
-17. -4. 75.
2.3

-28. -20. 64.
-29. -18. 64.
2.8

-42. -34. 53.
-44. -33. 52.
2.2

-53. -43. 44.
-53. -42. 44.
1.7

Y=127 2. 38. 90.
2. 40. 90.
1.4

-17. 12. 74.
-20. 12. 73.
2.4

-29. -4. 63.
-32. -3. 62.
2.8

-46. -19. 51.
-46. -17. 51.
1.1

-56. -26. 43.
-55. -24. 44.
1.7

Y=63 4. 59. 89.
3. 59. 90.
0.9

-20. 30. 71.
-19. 31. 72.
1.8

-33. 14. 60.
-33. 13. 60.
1.2

-49. -1. 50.
-49. -2. 49.
1.

-56. -9. 43.
-56. -9. 43.
0.4

Y=0 5. 75. 89.
4. 75. 90.
0.9

-24. 43. 69.
-22. 43. 70.
2.6

-40. 24. 56.
-39. 23. 58.
2.1

-54. 9. 47.
-55. 8. 47.
1.7

-54. 1. 42.
-55. 2. 42.
1.

Table 5: Bayer dither, printed with the EPSON printer.
Measured colour, predicted colour and colour difference
in CIELAB.

Levels C=255
a b L

C=191
a b L

C=127
a b L

C=63
a b L

C=0
a b L

Y=255 1. -2. 94.
1. -2. 94.
0.1

-19. -33. 72.
-18. -32. 73.
2.1

-33. -54. 57.
-35. -54. 57.
2.

-37. -65. 48.
-39. -63. 50.
3.2

-41. -73. 41.
-43. -70. 43.
3.8

Y=191 3. 35. 92.
3. 35. 92.
0.8

-23. 5. 68.
-22. 2. 68.
3.1

-37. -15. 54.
-38. -18. 53.
3.3

-44. -24. 45.
-43. -27. 47.
3.2

-49. -32. 38.
-48. -35. 40.
4.

Y=127 5. 62. 91.
7. 64. 90.
2.6

-20. 28. 67.
-19. 27. 66.
1.5

-39. 6. 51.
-39. 5. 50.
1.7

-44. -3. 43.
-45. -4. 44.
1.9

-47. -10. 37.
-48. -10. 39.
2.4

Y=63 8. 76. 90.
9. 76. 90.
1.

-19. 39. 65.
-18. 37. 64.
2.2

-38. 17. 50.
-39. 15. 50.
2.6

-43. 6. 42.
-44. 6. 42.
0.5

-45. -1. 37.
-45. 1. 36.
2.2

Y=0 10. 87. 89.
11. 88. 89.
1.3

-17. 48. 64.
-16. 48. 63.
1.2

-38. 23. 48.
-38. 23. 48.
0.8

-42. 11. 40.
-42. 12. 39.
1.7

-42. 5. 36.
-45. 7. 36.
3.2
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Conclusions

We introduced a new mathematical framework based on ma-
trices. This global approach incorporates all significant phys-
ical contributing phenomena. We introduced light scattering
coefficients which could also be changed to suit other models
of light scattering in paper. We have shown that classical re-
sults such as the Murray-Davis and the Clapper-Yule formu-
las correspond to particular cases of our model. 

We modelled the spreading process by enlarging the
drop impact according to the configuration of its neighbours
and the state of the surface. The printed surface was simulated
using high resolution grids. This allowed us to compute the
relative areas occupied by the various ink-combinations and
the corresponding light scattering coefficients . 

The spectra of halftoned samples produced with one ink
were predicted with an average prediction error of about

 in CIELAB. For two halftoned ink layers, we also
achieved good spectral predictions with an average error of

Table 6: Clustered dither, printed with the EPSON
printer. Measured colour, predicted colour and colour
difference in CIELAB.

Levels C=255
a b L

C=191
a b L

C=127
a b L

C=63
a b L

C=0
a b L

Y=255 1. -2. 94.
1. -2. 94.
0.2

-12. -26. 76.
-12. -25. 77.
2.3

-19. -42. 64.
-21. -41. 65.
2.4

-30. -58. 52.
-33. -58. 53.
3.4

-42. -73. 41.
-43. -70. 43.
3.9

Y=191 3. 26. 92.
3. 26. 92.
0.3

-14. -0. 73.
-14. 1. 74.
1.6

-20. -14. 62.
-22. -13. 63.
2.3

-31. -30. 50.
-35. -29. 50.
4.1

-45. -44. 39.
-46. -43. 41.
2.7

Y=127 6. 46. 91.
6. 48. 91.
1.4

-14. 16. 71.
-13. 17. 71.
1.7

-21. 2. 59.
-23. 3. 60.
2.2

-30. -12. 49.
-34. -10. 49.
4.5

-45. -26. 38.
-47. -22. 39.
4.9

Y=63 8. 68. 90.
9. 70. 90.
1.4

-12. 36. 69.
-11. 38. 69.
1.6

-22. 18. 57.
-24. 19. 57.
1.6

-32. 4. 47.
-35. 5. 46.
4.

-44. -7. 37.
-46. -5. 37.
3.6

Y=0 10. 87. 89.
11. 88. 89.
1.5

-10. 54. 67.
-7. 57. 69.
4.6

-21. 35. 55.
-22. 34. 54.
1.8

-34. 17. 44.
-36. 17. 43.
2.7

-43. 4. 36.
-45. 7. 36.
3.2

Table 7: Average prediction error in CIELAB, root
mean square error and maximal deviation for each
cyan-yellow series of predicted spectra. 

Series Average 

 

Maximal 

Bayer dither on HP
printer

2.25 2.53 5.08

Clustered dither on
HP printer

1.57 1.75 2.95

Bayer dither on
EPSON printer

2.10 2.34 3.96

Clustered dither on
EPSON printer

2.56 2.85 4.92

E∆ E∆ 2∑
n

----------------- E∆

δu v,

E∆ 1.4=
8180
about  in CIELAB. 
Currently we are extending the experimental set to other

ink combinations and other ink-jet printers. The complexity
of ink spreading requires deeper investigation in order to pre-
dict the behaviour of three ink combinations. 
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