
i f y i n g  l o u r  o n s t a n c y  

The Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T
U nC oC

Graham D. Finluyson and Steven Hordley Paul M. Hubel 
School qf Irzformation Systems H-P Laboratories 

Univ&sie of East An&a 
Norwich, NR4 7TJ 

UK 

Hewlett-Packard Company 
Palo Alto, CA 

USA 
e r  m  r  a n c y ;  
 w n  m i -  

  t e  ?  o p  

 t i o n  o r k   n g  u r  
c y  r a t i o n  r s  

s   

e    t i n g  e e r  l e  
e  n a n t  o u s  r s   

c e ,  e r  l a t i o n   
l e  n a n t .  t  -  

n a n t   l a t i o n s .  
t e d  s  o u s l y   

d   
 a t i o n  o r k  h  

g  t h m s  s s e d  n  

e c t  g e  o u n t  r  e  l u m i n a t i o n .  n f o r -  

t e l y   u m i n a t i o n   e n e   n e r a l l y  n k n o w n ,  
e f o r e  e s s a r y   f e r   o m  e  m a g e  a t a .  o  
 y  l e d  l o u r  n s t a n c y  l g o r i t h m s  a v e  

p r o p o s e d [ l 5 ,   ,  ,  , 6 ,  , 2 , 5 ] .  h e s t a r t -  
t   t  o r i t h m s   e  n d r i a n  o r l d  o d e l  
e  m a t i o n :  

e  r e s e n t s   B  s p o n s e    e v i c e  i t h  
t r a r s e n s i t i v i t i e s  ) ,   r f a c e  f l e c t a n c e  u n c -  

,  ) ,  e r  u m i n a n t  t h  e c t r a l  o w e r  i s t r i -  
o n  D )  ) .  .  )  o w s  a t  e  o l o u r  f  h e  

a c e  f o u n d e d  h  e  l u m i n a t i o n  o  h e  G B  e -  
s e   i c e  r f a c e   t  a b l e  e s c r i p t o r  

r l d ,  m   n g ,  n e y o f   f a c e ,  
 h m s ,  s  i t h m s  l y  

u r e ,  t e d  l a t i o n  e -  
e r  s h e d  h e r e  

h e d  t h m s  a   

a t e d  w o r k  n t e d  
c a n t l y ,  r a t i o n  w o r k   

n g  g t h m s .  l e ,   
s  a t e d  e y - W a n d e l l  -  

d .  

  t a l  

 n a n t  r  w .  
i n a n t   

l y  a s t  e  
e r   t s ,  

e  h n  

 n t .  l e  
t i n g  n a t i o n  e  e   

.  
s  s  a t e l y  h  
 e r  w n a l  ,  

  e  a n t .  e  
i o n  v e l y  g h t f o r w a r d  

o s e  i n e  f a c e  l o u r    h e  e s p o n s e  f  
c e   f a c e  w e d  d e r  m e  e f e r e n c e  l l u -  

n t   i l a r l y  i n e  l u m i n a n t s   h e  e s p o n s e  f  
c e  r o m a t i c  r f a c e  e w e d  n d e r  h a t  l l u -  

n t ,  n  h  f a c e s  d  g h t s  n   e p r e s e n t e d  y  
m e t e r s .  e n  a g e  n t a i n i n g  s U r f  u r f a c e s  

 , , r f  a m e t e r s   l v e  o r .  o w e v e r ,  

 .  ,  e  l y  s U , . f  u a t i o n s .  h a t  h e r e  
r  w n s  n  k n o w n s  a n s  a t  t  s  i f f i c u l t  

u p l e  h t  m  r f a c e  d  l v e  o r  o l o u r  o n -  
c y .  h e m a t i c a l  r l a n c e ,  l o u r  o n s t a n c y  s  n  

d  b l e m .  
e r  e   o b l e m  l l  s e d ,   a r i e t y  f  

t i o n a l  l d  s t r a i n t s  v e  e n  g g e s t e d .  a n d  5 1  
m e d  t  r y  g e  n t a i n s  i t e  a t c h  o  h a t  

o n s e   f a c e   o w n  i c h  e d u c e s  h e  
e r  n o w n s  e  m b e r   o w n s .   i f f e r -  

o a c h    s u m e  a t  e  v e r a g e  u r f a c e  

e c t a n c e  n e  h r o m a t i c ,   a t  h e  v e r a g e  

t  v i n g   n e   a t   e  c i d e n t  l l u m i n a n t .  
r  h o r s  4 ]  e  p l o i t e d  e  c t  h a t  i g h t s  n d  

a c e s   u r a t e l y  p r e s e n t e d   w - d i m e n s i o n a l  

a r  e l s  e l o p  g e b r a i c  h e m e s  o  o l v e  o r  
u r  s t a n c y .  

s  e r ,  h e r  a n  y i n g   r t h e r  o n s t r a i n  h e  
Abstract 
I n  t h i sp a pw e  c o nt hp ro fc oc
h o w  g i v ea n  i m ao f  a  s cu na nu ni
n a n tc a nw e  r e ca n  e s to ft hl iW d a

g e n ec o rf r ai nw hs of c
c o n si s  p o sa s  a  c oo ft hc oi a i
a g e  w i t ht h ec o lt h ac ao cu ne o a s o

p o s sl i gR a tt h aa tt or a s
e s t io f  t h ei l la sm ap ra h
d o n ew e ,i n  t h ef i ri n sr ea  c om
s u r ef o r  e a cp o si l lW et hs a e
m a t eo f  t h es c ei l lb ao nt hc

T h e  w o rp r eh ef of rp p

l i s h[ 9 ]w o rI n  t h ip aw ee xt w b
s h o wt h at h ec o rf ri sr e t
a l l om a ne x ia l gt ob ee xw i

T h e  g r e ym a xR Gg am aa M
W a n da l gp e rt ha lm w
c i t ei n  t h el i ta r ep ri nt hc of
w o r kT h iw o rt o gw iw op ue [
s h o wt h aa l ma l lp u ba lb o a M

d r i aw o rc a nb e  f o ri nt hf rp
h e r eS i gt h ec of rc b u

t o  a d d  v a lt o  e x ia lF oe xs o
t h e  p r o ba s sw it hM aa
r i t hc a nb e  r e m

1. Introduction 

A n  i m a go f  a  w h ip i eo fp at aw a d

c a m eu n da  y e li l lw ia py T
s a m ep i eo f  p a pu n da  b lo rr ei w

s i m ia p pb l uo r  r eI nc ot hs p o
p a p ev i eb y  a  h u mo bu na no t l

w i l la p pw h iT h er ef ot hi st t h

v i s us y si s  c o lc oT hi si i c o
d i s ct h es c ei l lt oa ra a s p

c e p to f  o b jc o l
T o  e n st h at h ec o li ni ma cm

t h e  c o l oa n  o b ss ai nt ho rs i i i
p o r tt h ac a mt o oa rc oc oI t s i
l u m ii s  k n ot h ei ti sr es t[ 1
12
 e r  s i de  o b l e l o uo n s t
n  g e  e n e  d e r k n ol l u

 o v e ri m a a t  g h te  e v e l 

r a lr e l am e w i c hl v io r  o l o
t a ne d  r e l e  l o un  n  m -  

  o u rt  n  c u r  d e ra c h  f   e t  f  

i b lh t s .h e rn  t e m p c o v i n g
m a t u m i n y  e v iu t h oa v e

,    s t  t a nc o vr r ee a -
 h  s i bu m i e n  e l e cn  s t i
  n e  u m is e d   e s eo r r e

k  s e nr e  l l o wo m  r e v iu b -

e d   k .  s  p e r   t e nh a t  o r ky  
i n gt   r e la m e w i c h  n o u go  

w  y  s t i no r i  p r ei t h it .  

t o  c o r ra n  i m at o  a c cf ot hi lU

t u n at h ei l li na  s ci sg eu
t h e ri t  i s  n e ct oi ni tf rt hi d T
t h i se n d  m a ns o  c a lc oc oa h

b e e n1 6 ,3 ,  1 21 71 01 1T
i n g  p o i nf o rm o sa l gi st hM ow m
o f  i m a gf o r

w h e rp  r e pt h eR Gr eo fa d w
s p e cR ( At oa  s ur ef
t i o nS ’ ( Au n da n  i l lw is pp d
b u t i( S PE ( AE q n( 1s ht ht hc o t

s u r fi s  c o nw i tt hi ls t R r
s p o no f  t h ed e vt o  a  s ui sn oa  s td

- w oi m uB ,  m u tp p in d  a l ot h a ts u r
e l lo r i th a pe  g o ro s t  i d e

d   e r a t e s e n i s  r r er a m
.  s  k  e t ht h  r k  b l il s e w7 ]  
s  t  o s t   l i sg o r is e dn   o n -

n  l d   m u l e  a m er e s e
.  n i f i r e la m ea n  e  s e d

u e  s t io r ir  a m po m ef  
l e mo c it h  e  l o nl g o

m   o v e

e  t e  c e   p e rk e ni t h   i g i

r a  e r  l o wu m il l  p e ae l l oh e  
 c e  e r  e r  u e   d  l l u mi l l

l a re a r  e  d .   n t re  a m e  i e cf  
r  w e d  a n  s e r vd e ry  f  h e  i g h

 a r  t e .   a s o nr  i s   a t  h e  u m a

a l  t e m  o u rn s t aa t  ,  t  s  a p a bf  
o u n n e  u m i r i vt   t a b le r -

 e c t  o u r
u r e  t   o u r a g ec u ra t c

u r se r v  e  i g ic e n et  s  m -  
a n tt  e r a s  l o u rn s tf  h e  c e nl -  
n a tw n  n    l a t ir a i3 1  

S u p pw e  d e fs u rc ot ob et r o
a  d e v it o  t h es u rv i eu ns or i
m i n aa n ds i md e fi lb yt r o
t h e  d e v it o  a n  a c hs uv iu t i
m i n at h eb o ts u ra nl ic ab er b
3  p a r aG i va n  i mc oN s
w e  h a v e3 N 8+  3  p a rt os of H

f r o mE q n( 1 )w e  h a vo n3 Ne qT t
a r e  f e w ek n ot h au nm et hi i d

t o  d e c ol i gf r os ua ns of c c
s t a nI n  m a tp ac oc i a

i l l  p o s ep r o
I n  o r dt o  m a kt h ep rw ep oa v o

a d d iw o rc o nh ab es uL [ 1
a s s ut h ae v ei m ac oa  w hp s t
t h e  r e s po f  o n es u ri sk nw hr t
n u m bo f  u n kt o  t hn uo fk nA d
e n t  a p p r[ 3 ,1 2 1i s  t o  a st ht ha s

r e f li n  a  s c ei s  a cs ot ht a

l i g hl e at h es c ei st ho ft hi ni
O t h ea u t[ 1 7 ,h a ve xt hf at l a
s u r fc a nb e  a c cr ea sl o

l i n em o dt o  d e va ls ct s f
c o l oc o n

I n  t h ip a pr a tt ht rt of uc t
10



]) 

The Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T
problem we consider an alternative point of view. Given 
the model of image formation in Eqn. (l), and without 
making any further assumptions about the world, it fol- 
lows that the solution to colour constancy is in general 
not unique. That is, a particular set of image data will be 

consistent with many combinations of light and surfaces. 
For example, a reddish sensor response is consistent with 
a white surface viewed under a reddish light, a reddish sur- 

face under a white light, and with many other combinations 
of light and surface. Our approach to solving for colour 

constancy is, in the first instance, to find all such com- 
binations of light and surfaces which are consistent with 
the image data and then choose a single combination from 
amongst these. 

The work presented here is a natural extension of pre- 
viously published work [9, 141. In this work we posed the 
colour constancy problem in a correlation matrix memory 

framework. The method works by first building a correla- 
tion matrix to correlate image colours with the set of possi- 

ble scene illuminants. Each column of the matrix is a dis- 
crete representation of a colour space (chromaticity space 

for example) stretched out into a vector. A column of the 
matrix corresponds to a possible scene illuminant, and its 
entries tell us which colours can be seen under that illumi- 
nant. Given a set of image data we build a corresponding 
image vector which tells us which colours are present in 

the image. We then correlate this image vector with each 
column of the correlation matrix to obtain a measure of 
the degree of correlation between the image data and each 

possible scene illuminant. Based on these correlations we 
choose an estimate of the scene illuminant. 

Previous work [9] has shown that this method affords 
very good colour constancy, and is significantly better than 

all previously published algorithms. Furthermore, the ap- 
proach is almost trivial to implement, computationally sim- 

ple, and robust. The contribution of this paper is to show 
that the correlation matrix memory is in fact a general frame- 
work for solving for colour constancy, We demonstrate 

that a number of previously published algorithms can be 
cast in our framework. In this way, the correlation ap- 

proach unifies colour constancy algorithms which at first 
glance appear to be very different. Indeed, this work, to- 
gether with work published elsewhere [7] shows that all 
algorithms which adopt the model of image formation in 
Eqn. (I) are either precisely expressible in the correlation 

framework, or are very closely related to it. Uniting colour 

constancy algorithms in a common framework, a pleasing 
result in itself, also helps us understand the relationship 
between algorithms and their relative strengths and weak- 

nesses. As we shall see it also provides means for improv- 

ing these algorithms. 
212
2. A framework for colour constancy 

Figure 1: The general correlation framework for colour con. 

stancy. 

Our framework for colour constancy is illustrated in 
Figure 1. As a first step in solving for colour constancy 
we must build a correlation matrix memory M which tells 
us which colours can be observed under which illuminant, 

Pre-processing aside, there are 3 steps in estimating the 
scene illuminant for a particular image. The first is to ex- 
tract some statistics from the image. Typically, this will be 
a histogram of the colours in the image, but we use the gen- 
eral term image statistics, to allow for other data to be used 
if and when it is required. Step 2 is to correlate the image 
statistics with the correlation matrix memory M. Or equiv- 

alently, with the set of possible scene illuminants. This 
results in a set of correlation statistics which tell us how 

well correlated is the image data with each of the possi- 

ble illuminants. These correlation statistics are used in the 
3rd, illuminant selection, stage of the algorithm, to choose 
a single illuminant from the set of possible illuminants as 
an estimate of the scene illuminant. As we shall see, these 
steps are quite general, and allow many algorithms to be 
expressed in the framework. In this section we develop 
the framework by showing how a particular algorithm - 
Finlayson’s [6] colour in perspective algorithm - can be 
formulated within it. 

Finlayson’s algorithm is founded on the notion of colour 
gamuts: the set of all image colours possible under a par- 
ticular illuminant (an idea originally suggested by Forsyth [lo

In Finlayson’s algorithm colour gamuts are modelled ana- 
lytically as closed continuous regions of a 2-d chromaticity 

space. Illuminants are represented by the mappings (actu- 
ally 2-d diagonal matrices) which take their colour gamuts 
to the colour gamut of some reference or canonical light. 
Given a particular image, solving for colour constancy is 
then a two stage process. First, the set of mappings tak- 

ing all image colours to the gamut of the reference light 
is determined. Each of these mappings represents a possi- 
ble illuminant. However, Finlayson pointed out that not all 

of these mappings necessarily correspond to illuminants 
which occur in the real world. To restrict mappings to 
those corresponding to plausible illuminants Finlayson de- 

fined a gamut of mappings corresponding to all lights that 
1
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were physically plausible and then intersected this set with 
the set recovered in the first stage of his algorithm. From 

the resulting set of mappings a single mapping was chosen 
as an estimate of the unknown scene illuminant. 

2.1. Building the correlation matrix 

To implement Finlayson’s algorithm in our framework we 
first build a correlation matrix M,v;~. This entails char- 
acterising the set of possible scene illuminants, and deter- 

mining the range of image colours that can be observed 

under each of these lights. We characterise the ith possible 
illuminant by its chromaticity co-ordinate ci in some 2-d 
chromaticity space. In Finlayson’s algorithm this space is 

(r/b, g/b). The key difference between the framework we 
present here and Finlayson’s formulation is that we use a 
discrete representation of this chromaticity space, so that 
the set of possible illuminants between which we wish to 
distinguish is finite. For convenience we represent these 
illuminants in an Nilr x 2 matrix C’ill whose it’ row is 

the chromaticity co-ordinate of the ith illuminant. We fur- 

ther assume that possible colours are specified in the same 
discretised chromaticity space and that there are a finite 
number of such colours. Since we are characterising illu- 
minants and surfaces in terms of device sensor responses 
the discrete representation is wholly valid because a digi- 
tal camera can only return a finite and discrete set of sensor 
responses. For example the responses of a camera giving 
&bit data are RGB triplets where each of R, G, and B is an 
integer between 0 and 255. 

Figure 2: Three steps in building a correlation matrix. (a) The 

sensor responses of a set of reference surfaces under an illumi- 

nant are determined. (b) The gamut of colours possible under 

this light is found. (c) The process is repeated for all possible 

illuminants to form the correlation matrix M. 

For each possible scene illuminant we want to determine 
12
which colours can be observed under it. To do this we take 
a set of reference surfaces, representative of the range of 

naturally occurring surface reflectances and use Eqn. (1) to 

determine the corresponding sensor responses. From these 
sensor responses we calculate the chromaticities (plotted 

in Fig. 2a). The set of possible chromaticities under the 
illuminant is taken to be the convex hull of these points 

(Fig. 2b). From this we form a vector, each element of 
which corresponds to a binary representation of the dis- 
crete chromaticity space. Entries in the vector are set to 

one if the corresponding chromaticity is possible under the 
illuminant, and to zero otherwise. This process is repeated 

for all possible illuminants and the vector corresponding 
to the it’ illuminant forms the it’ column of the corre- 
lation matrix MFj,, (Fig. 2~). To restrict illuminants to 
only those which occur in the real world we can either re- 
move a column corresponding to an implausible illuminant 
from MFin or alternatively set all the entries of the column 
to zero. Representing our knowledge about which image 

colours are possible under which illuminant is the heart of 
our correlation framework. As we will see later, imple- 

menting different algorithms mostly amounts to changing 
the entries of the correlation matrix A4~i~. 

Figure 3: Solving for colour constancy. The computation pro- 

ceeds in 3 stages. (a) Histogram the chromaticities in the image. 

(b) Determine the degree of correlation between the image a’ata 

and each possible scene illuminant. (c) Use these correlations to 

select an estimate of the unknown illuminant. 

2.2. Extracting image statistics 

Given a particular image Finlayson’s algorithm first deter- 
mines the set of chromaticities present in the image. We 

represent these in an N*%,.f x 2 matrix C’im whose ith row 

corresponds to the ith surface in the image. From these 

image chromaticities (plotted in Figure 3a) we determine 

an image vector 2 (Fig 3b). Each element of this vector 
represents a bin of the discrete chromaticity space, and an 
32
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element is set to one if its corresponding chromaticity is 
present in the image, and to zero otherwise. We can define 

a binary histogramming operation &r&isr2d() to repre- 

sent this process, so that: 

2.3. Correlating the image data 

Figure 3c illustrates how the image data is correlated with 
the correlation matrix. Highlighted rows of the matrix in 
this figure correspond to entries of g which are one (that 

is the corresponding chromaticity is present in the image). 

Summing the highlighted entries of each column in the ma- 
trix tells us how many image chromaticities are consistent 

with each illuminant. Mathematically we can write this 
process as: 

1= gtM = binhist2d(Cim)tM (3) 

so that the ith entry of 1 contains the number of image chro- 
maticities consistent with illuminant i. That is it expresses 

the degree of correlation between the image data and each 
of the possible scene illuminants. 

2.4. Illuminant selection 

From this correlation data we can determine the set of 
feasible scene illuminants recovered by Finlayson’s algo- 
rithm. For an illuminant to be feasible it must be consistent 
with all image colours. For example, the image in Figure 3 

contains 4 chromaticities (zi vi = 4), so the set of plausi- 
ble illuminants lr,laUs are those whose corresponding en- 
tries in 2 are 4. However, factors such as image noise often 
mean that not all image chromaticities are consistent with 
any choice of illuminant. So we find the illuminant that is 
consistent with most image colours: 

I plaus = d~ag(thresh(L))& (4) 

where thresh0 is defined such that: 

thresh(li) = 
1, if Zi = rrzus$) 
0, otherwise @a) 

thresh(L) = [thresh(Zl), . . . , thresh(lNijl)] (5b) 

and the operation diug(cx) returns a diagonal matrix whose 
diagonal entries are the elements of a. 

The final stage in Finlayson’s algorithm is to select an il- 
luminant from this plausible set as an estimate of the un- 
known illuminant. We could do this by, for example, aver- 

aging all the illuminants in IplaU#. In our framework this 

is written: 

2 = thresh2@)& (6) 
412
where thresh20 is thresh0 modified such that: 

thresh2(li) = ~/Np~aus, if lj = mu~(Q 
thresh2(&) = 0, otherwise (7) 

and NPlaUs is the number of plausible illuminants NplaUs = 
xi thresh(&). 

In our framework Finlayson’s algorithm (with mean 
selection) can be summarised as: 

(8) 

Eqn. (8) is remarkable because it is so simple. The original 

colour in perspective algorithm, based on continuous rep- 
resentations of colours, was necessarily based on a series 
of complex geometric calculations. 

In the next section we show that Eqn. (8) is a general 
framework for colour constancy and that by simply chang- 
ing the correlation matrix MFin and modifying the his- 
togramming and thresholding operations a number of other 
algorithms can be posed in the same form. 

3. Other algorithms in the framework 

3.1. Grey-World 

We begin with the so called grey-world algorithm. This 
algorithm has been proposed in a variety of forms by a 
number of different authors [3, 12, 161 and is based on the 

assumption that the spatial average of surface rellectances 
in a scene is achromatic. Since the light reflected from an 
achromatic surface is changed equally at all wavelengths 

it follows that the spatial average of the light leaving the 

scene will be the colour of the incident illumination. If we 
wish to recover an estimate of the scene illuminant in the 

form of the sensor response of a device to the illuminant, 
then the grey-world algorithm is trivial to implement; we 
simply take the average of all sensor responses in the im- 
age: 

p* = mean(RGBim). (9) 

where RGBi,,, is an Npiz x 3 matrix whose ith row is 
the RGB of the ith pixel in the image. Equivalently we 
can define a matrix RGBill the rows of which contain all 

possible RGB sensor responses and re-write Eqn. (9) as: 

pE = hist(RGBim)tZRGBill (10) 

where the operation hist() returns a vector h such that: 

h = vet(H) 

H(R, G, B) = XzY f(R, G, B), 

f(KG,B) = { 
1 if RGBim(j) = (R, G, B) 
0 otherwise 
3
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In Eqn. (11) H(x, y, Z) returns the count of the number of 
pixels in the image such that: R = x, G = y and B = z. 
The operator uec() takes the 3-dimensional array H and 
stretches it out as a long vector of numbers. 

Returning to Eqn. (10) we see that the mean RGB can 
be calculated by multiplying the colour histogram of an 
image with the possible illuminants RGBill. However, 
we have added the matrix Z into this equation (which we 
needn’t have since1RGBill = RGBill), But, the addition 

is useful as Z plays exactly the same role as the correlation 
matrix MF~~: it represents our knowledge about the inter- 
action between image colours and surfaces. The columns 

and rows of Z represent possible illuminants and possible 
image colours respectively. Hence, Z tells us that given an 
RGB sensor response in an image, the only illuminant con- 
sistent with it is the illuminant characterised by the same 
sensor response. Correspondingly the vector 

1= hist(RGBi,,,)? (12) 

whose elements contain the number of image colours con- 

sistent with each illuminant, can be interpreted as a mea- 
sure of the likelihood that each illuminant (each distinct 
RGB present in the image) is the scene illuminant. Based 
on these likelihoods an estimate of the scene illuminant 
is calculated by taking the weighted average of all illumi- 
nants. In this framework it is clear why grey-world is an 
inadequate solution to the colour constancy problem; the 

matrix Z does not accurately encode our knowledge about 
the correlation between lights and image colours. We have 
seen in Section 2 how this information can be more ac- 
curately represented in the correlation matrix framework 
and correspondingly, the colour in perspective algorithm 

affords significantly better colour constancy [8]. 

3.2. Modified Grey-World 

Gershon et ul [12] noted another limitation of the grey- 

world algorithm. They pointed out that the spatial average 

computed in Eqn. (9) is biased towards surfaces of large 
spatial extent. To alleviate this problem they modified the 

algorithm by segmenting the image into patches of uni- 
form colour prior to estimating the illuminant. The sensor 
response from each segmented surface is then counted only 
once in the spatial average, so that surfaces of different size 
are given equal weight in the average. It is trivial to add 
this feature in our framework; we simply need to use the 

histogramming operation binhist3d(), (binhist2dO de- 
fined in Section 2, modified to work on RGBs rather than 

chromaticities) rather than hist(): 

pE = binhist3d(RGBim)tIRGBill (13) - 
12
3.3. Gamut Mapping Algorithms 

In Section 2 of this paper we formulated Finlayson’s colour 
in perspective algorithm in the correlation matrix frame- 
work. This algorithm is a refinement of work by Forsyth [ 1 O]
who was the first to use the notion of colour gamuts in solv- 

ing for colour constancy. Rather than modelling colour 
gamuts and illuminants in a 2-d chromaticity space as did 

Finlayson, Forsyth’s algorithm was formulated in 3-d cam- 
era RGB space. With this change, a 3-D gamut mapping 
solution to colour constancy can be written in our frame- 

work as: 

k = thresh2(binhist3d(RGBim)tMFov)RGBill (14) 

where the ijth entry of MJT~~ is one if image colour i is 
possible under illuminant j and is zero otherwise. We note 
that this is not exactly Forsyth’s original algorithm since 
he used a different method to select an illuminant from the 
feasible set. We use mean selection here, which has been 

shown [ 11 to give very similar performance. 
Posing the gamut mapping algorithms in our frame- 

work significantly simplifies the computation, which in the 
original formulation of these algorithms was laborious. The 
framework also allows us to further improve the algorithms. 
In both algorithms, a single image colour inconsistent with 
all possible illuminants caused them to give no solution to 
colour constancy. In reality we wish to relax things and 
search for solutions that are consistent with all or almost 
all image colours. Since, if 50 chromaticities are consis- 
tent with illuminant A and 48 with illuminant B then it 

is likely that both illuminants are possible. This majority 
consistency is also trivial to implement in our framework; 
we simply define a new threshold function thresh30 such 

that: 

thresh3(x) = 1 /&lkW ifx >7n 
0 otherwise (15) 

where m is chosen in adaptive fashion such that m 5 
mox (i). The improved gamut mapping algorithm can then 
be written as: 

fi = thresh3(binhist3d(RGBim)tMFoT)RGBill (16) 

3.4. Maloney-Wandell 

Many authors [3, 4, 171 have developed algorithms for 
colour constancy based on a representation of lights and 
surfaces as low-dimensional linear models. That is, illumi- 

nant SPDs E(A), and surface reflectance functions S(A), 
are expressed as linear combinations of a finite number of 
basis functions: 
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In this representation lights and surfaces are characterised 
by their weights c and z and solving for colour constancy 
is posed as recovering these vectors for the light and sur- 

faces in an image. With these models the image formation 
equation (Eqn. (1)) can be rewritten: 

where AC is called the lighting matrix and has kjth en- 

try JE(A)Sj(A)&(A)cZA. Maloney and Wandell [17] set 
out conditions under which Eqn. (18) could be solved for g 

and g. Specifically they showed that if there were p classes 
of device sensor, and if illuminants and surfaces could be 
represented by p and (p - 1)-d linear models, then colour 
constancy was soluble. For example, a solution is possi- 
ble for p = 3 classes of sensor if surfaces and illuminants 
are described by 2 and 3-d linear models. Under such con- 
ditions the sensor responses of all surfaces viewed under a 
particular illuminant must lie in a plane of the sensor space. 

Furthermore this plane uniquely determines the lighting 
matrix AC, Given a particular image, illuminant recovery 

in Maloney and Wandell’s scheme amounts to finding the 
plane which best fits the image data and using this plane to 
determine c and hence the lighting matrix AC. 

In our framework we begin with a set of illuminants 
between which we wish to distinguish and a representation 

of colours in a discretised colour space, for example RGB 
sensor space. Given a set of reference surfaces imaged 
under a possible illuminant we can determine the plane 
which best fits the sensor data. The intersection of this 
plane with the discretised RGB space tells us the gamut 
of image colours which can be observed under the illumi- 
nant. We can thus determine a correlation matrix MM-~ 

the columns of which are formed by repeating this process 
for each possible illuminant. Solving for colour constancy 

can then once again be performed in our framework: 

p = th~e~h2(binhi&3d(RGBi~)tM~-~)RGB~~~ 

(1% 
With only 3 classes of sensor Maloney and Wandell’s al- 

gorithm does not produce good colour constancy since, il- 

luminants are not in general well described by 2-d linear 
models as prescribed by their scheme. Furthermore the il- 
luminant recovered by their process is not guaranteed to be 
physically realisable. The implementation of the algorithm 
given here does guarantee physical realisablility however it 

does not account for the dimensionality problem. We pre- 
dict however, that Eqn. (19) may well deliver some degree 

of colour constancy because the RGB planes that define an 
illuminant are based on preprocessing (i.e. a good model 

of surface reflectance statistics) and not on the image data 

itself, Moreover, the thresholding step will allow us to 

quantify the range of possible solutions. It could be that 
the Maloney Wandell algorithm (viewed in the correlation 
12
framework) is indecisive about what light is possible and 

the fact that the algorithm delivers poor colour constancy 
is explained by the uncertainty in the illuminant likelihood 

calculation. 
We are currently evaluating the Maloney Wandell algo- 

rithm, and other algorithms, in the correlation frameworks. 
Quantitative results that compare conventional algorithm 

performance with that delivered by corresponding correla- 
tion implementations are currently being carried out. We 

predict that the latter will significantly outperform the for- 

mer. 

3.5. Maximum RGB 

Finally we consider one of the most simple, and most widely 
used, algorithms for colour constancy [ 151. A white patch 

reflects all light equally at all wavelengths therefore the 
sensor response to a white patch determines the illumi- 

nant colour. So if an image contains a white patch and 
if this patch can be found then we should be able to solve 
for colour constancy. Since any other surface in the image 

must reflect proportionately less light than the white patch, 
simply finding the surface with maximum RGB should 
suffice to find the white patch. In fact we do not require 
there to be a white patch in the image but only that there 
are surfaces in the image which reflect all light to which 
the red, green, and blue sensors are sensitive. An estimate 
of the unknown illuminant can then be found by: 

fi = mux(RGB;m) (20) - 

Before proceeding further we point out to the reader that 

Eqn. (20) is a highly non-linear function and so it might 
appear surprising that it can be expressed in the correlation 

framework. 
The sensor response to a white patch under a given il- 

luminant limits the gamut of image colours for that illu- 

minant: any other RGB sensor response must fall within 
the cube defined by the RGB response to the white patch. 

Hence we can determine a correlation matrix ~~~~ whose 

ijth entry is one if the ith RGB response is less than the 
RGB response of illuminant j to a white patch, and is zero 

otherwise. Given an image, a set of plausible illuminants 
can then be found in our framework by: 

I Plaus = diag(thresh(hist(RGBiW)tMMaz))RGBili 

(21) 
From IPlaus we want to find an estimate of the unknown 

illuminant. Figure 4 characterises the set of possible il- 
luminants returned by Eqn. (21). For ease of illustration 
this figure considers 2-d sensor responses. The shaded re- 

gion in Figure 4a represents the set &Us - for 3-d sensor 
responses we have a cuboid rather than a rectangle. In Fig- 

ure 4b we see what happens when the RGBs are inverted, 
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Figure 4: The feasible solutions for the rnax-RGB algorithm. 
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