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Abstract

There is a growing trend in machine color constan
research to use only image chromaticity informatio
ignoring the magnitude of the image pixels. This is natu
because the main purpose is often to estimate only
chromaticity of the illuminant. However, the magnitudes
the image pixels also carry information about t
chromaticity of the illuminant. One such source 
information is through image specularities. As is w
known in the computational color constancy fie
specularities from inhomogeneous materials (such 
plastics and painted surfaces) can be used for c
constancy. This assumes that the image cont
specularities, that they can be identified, and that they
not saturate the camera sensors. These provisos ma
important that color constancy algorithms which make 
of specularities also perform well when the they are abs
A further problem with using specularities is that the k
assumption, namely that the specular component is the c
of the illuminant, does not hold in the case of color
metals.

In this paper we investigate a number of co
constancy algorithms in the context of specular and n
specular reflection. We then propose extensions to sev
variants of Forsyth‘s CRULE algorithm1-4 which make use
of specularities if they exist, but do not rely on the
presence. In addition, our approach is easily extende
include colored metals, and is the first color constan
algorithm to deal with such surfaces. Finally, our meth
provides an estimate of the overall brightness, wh
chromaticity-based methods cannot do, and other R
based algorithms do poorly when specularities are prese

Introduction

The image recorded by a camera depends on three fac
The physical content of the scene, the illumination incid
on the scene, and the characteristics of the camera. 
leads to a problem for many applications where the m
interest is in the physical content of the scene. Consider
example, a computer vision application which identifi
objects by color. If the colors of the objects in a datab
are specified for tungsten illumination (reddish), then obj
1114
y
,

al
the
f
e
f
ll
,
as
lor
ins
do
e it
e

nt.
y
lor
d

r
n-
ral

r
 to
y
d
h
B

t.

ors:
nt
his
in
for
s
se
ct

recognition can fail when the system is used under the v
blue illumination of a clear sky. This is because the cha
in the illumination affects object colors far beyond t
tolerance required for reasonable object recognition. T
the illumination must be controlled, determined, 
otherwise taken into account.

The ability of a vision system to diminish, or in th
ideal case, remove, the effect of the illumination, a
therefore “see” the physical scene more precisely, is ca
color constancy. There is ample evidence that the hum
vision system exhibits some degree of color constan
Interest in human vision, as well as robotics and ima
reproduction applications, has led to much research 
computational methods to achieve color constancy. In 
paper we build on this body of work, and propose a
algorithm which combines the strengths of two differe
approaches to color constancy. We combine the informa
inherent in collections of matte surfaces and the informa
inherent in specularities. Interestingly, our method is ea
extended to work with specularities from colored met
such as copper, and is the only method we know of wh
does so (but see5-9 for related work).

The use of specularities for machine color constan
has its origin in the dichromatic model of reflectance.10,11

This model separates the light reflected fro
inhomogeneous materials such as plastics and paints in
diffuse (body) component, and a specular (interfa
component. The body reflection blends the spec
reflectance properties of the object with that of t
illumination, whereas the specular component has the s
spectral makeup as the illuminant. Reflections fro
different parts of the same surface have varying amount
the two reflection components due to changes in geome
and various researchers have used this property to esti
the illuminant color.10,12-16 Alternatively, since the maxima
specular reflection is typically much larger than the bo
reflection, a bright specularity can be a good estimate of
illuminant color as is, if it can be identified as a specular
Either way, using specular reflection for color constan
typically requires an implicit physical segmentation of t
image pixels, and the difficulties in doing this have, in pa
inspired the present work.

In this paper we investigate a number of co
constancy algorithms in the context of specular and n
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specular reflection. We then propose extensions to sev
variants of Forsyth‘s CRULE algorithm1-4 which make use
of specularities if they exist, but do not rely on the
presence. In addition, our approach is easily extende
include colored metals, and is the first color constan
algorithm to deal with such surfaces. Finally, our meth
provides an estimate of the overall brightness, wh
chromaticity-based methods cannot do, and other R
based algorithms do poorly when specularities are prese

Approaches to Computational Color
Constancy

For the purposes of this study, we will assume that the 
of the algorithms is to estimate the response of the vis
system to a perfect white patch. This response will loos
be referred to as the color of the illuminant. It is mo
natural for that response to be the same dimension as
number of sensors in the vision system, and thus, fo
standard color camera, the response would be the (R,
of a white patch under that illuminant. However, it is oft
the case that we are most interested in the chromaticit
the illuminant, and an estimate of that chromaticity w
suffice. This being the case, a number of color consta
algorithms have been developed which work entirely
some chromaticity spaces,2,4,17-20 and much progress has bee
made by taking advantage of the simplifications afforded
this strategy.

Nonetheless, if we now consider the case wh
specularities are present, we observe that certain RGB b
algorithms, such as the original CRULE algorithm, estim
the illuminant chromaticity surprisingly well—even thoug
they were not designed to optimize chromatic
estimation.3,21 The success of these algorithms wh
specularities are present is limited by the dynamic rang
the vision system. We expect more dynamic range
become available to machine vision systems (see [22]
information about one high dynamic range camera), 
currently, specularities tend to be clipped, and such pi
must be excluded as unreliable. As clipping becom
severe, these methods degrade, especially Retinex.21 We also
note that using these algorithms for illumination brightne
estimation fails when strong specularities are present.

Chromaticity-based approaches, on the other ha
cannot use specular information on a pixel by pixel ba
and cannot provide illuminant brightness estimatio
However, as noted above, we are often most intereste
illuminant chromaticity estimation, and these approac
tend to be robust with respect to specularities. This
because specularities in chromaticity space sim
desaturate colors, leading to colors which are perhaps
useful to the algorithm, but are nonetheless plausible,2 and
thus the degradation is graceful. The essence of 
observation also applies in the case of colored metals.

In contrast to the above algorithms (and others), wh
we analyze post hoc with respect to their abilities to ign
or take advantage of specularities, several researchers 
developed computational color constancy methods wh
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explicitly use and rely on specularities.10,12-16 In favorable
situations, these methods can work well, but stro
specularities are not always present, and as noted above
often clipped. Furthermore, specularities from color
metals are not the same color as the illuminant, and th
methods do not address this. These considerations lead 
propose extensions to several of the variants of Forsy
CRULE method which take advantage of specularities
they exist, but continue to be strong algorithms if there 
no specularities present.

Extending CRULE for Specularities

We will now provide some additional details of th
extension beginning with a brief review of Forsyth
method.1 First we form the set of all possible RGB due 
surfaces in the world under a known, “canonica
illuminant. The set is convex and is represented by 
convex hull. We will refer to this set as the canonical gam
The set of all possible RGB under the unknown illumina
is similarly represented by its convex hull. Now, under t
diagonal assumption of illumination change, these two h
are a unique diagonal mapping (a simple 3D stretch) of e
other. To understand this assumption further, suppose 
the RGB of white under the unknown illuminant is (W
Wg, Wb), and the RGB of white under the canonic
illuminant is (Wr’, Wg’, Wb’). Then the RGB of white in
the unknown gamut is mapped to the corresponding RG
the canonical gamut by multiplication by the matr
DIAG(Wr’/Wr, Wg’/Wg, Wb’/Wb). To the extent that this
same mapping applies to other, non-white surfaces, we
that we have a diagonal model of illumination change. T
efficacy of this model is partly a function of the visio
system sensors, and is a good approximation for 
camera.

The gamut mapping strategy is to constrain the se
possible diagonal maps, with each map corresponding t
illuminant estimate. Figure 1 illustrates the situation us
triangles for the gamuts. The upper thicker triang
represents the unknown gamut of the possible sen
responses under the unknown illuminant, and the lo
thicker triangle represents the known gamut of sen
responses under the canonical illuminant. We seek 
mapping between the sets, but since the one set is
known, we estimate it by the observed sensor respon
which form a subset, illustrated by the thinner triang
Because the observed set is normally a proper subset
mapping to the canonical is not unique, and Fors
provides a method for effectively computing the set 
possible diagonal maps. (See [1-4, 23] for more details
gamut mapping algorithms). Another important contributi
was the observation that the set of maps could furthe
constrained by restricting them to ones corresponding
common or expected illuminants.2 We will make use of this
extra constraint in this study, and we will denote algorith
using them as "extended" CRULE, or E-CRULE for short
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The convex hull of 
measured RGB is 
taken as an 
approximation of the 
entire gamut under the 
unknown illuminant

The unknown gamut of all possible 
RGB under the unknown illuminant.

The known gamut of 
all possible RGB 
under the known, 
canonical  illuminant. 

Possible maps

Figure 1. Illustration of the basic idea of gamut mapping co
constancy.

Once the set of possible maps has been computed
important second stage of the algorithm is to choos
solution from the feasible set. The original method was
choose the mapping which maximized the volume of 
mapped set. Although it was not designed to do so, we h
observed that this method is a good choice for estima
the illuminant chromaticity, especially in the presence
specularities. (Note that the selected diagonal map implic
specifies an estimate of the illuminant color as defin
above). A second method for choosing a solution is
average the possible maps. This method potentially giv
better estimate of the illuminant RGB,3,21 and can be more
robust under clipping.

In order to use Forsyth's method in the case 
specularities, we model specular reflection and extend
canonical gamuts appropriately. The canonical gamuts
polytopes in RGB space, having roughly the shape of 
multi-faceted pyramids which are joined together at th
identical bases. We normally include the origin as one of
vertices (and thus it is the apex of one of the pyrami
because, a priori, the observed RGB could all be due
surfaces which are arbitrarily dark as a result of be
obliquely illuminated. At the other extreme (the apex of 
other pyramid) there is a vertex corresponding to the whi
reflectance. To include specularities we take that vertex, 
move it away from the origin, along the line connecting
the origin. Thus the hull facets adjacent to the origin rem
3116
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the same, but the ones adjacent to the RGB of white
stretched away from the origin. In other words, we ad
single reflectance to our world which is a multiple of
uniform reflectance. The multiple should be large enough
accommodate a bright specularity taking the dynamic ra
of the vision system into account, but the exact specifica
of the value is not very important. (We have experimen
with factors of 2, 4, and 8). The concept is illustrated us
two dimensions in Figure 2.

Projection of observed gamut. The shaded part is the 
gamut due to diffuse surfaces. 

Projection of the  canonical gamut. The broken line 
shows the inclusion of specularities. The dotted line 
shows the gamut used by chromaticity methods. Here the 
gamuts are cones in RGB space. 

Mapping the observed 
gamut into the 
canonical makes more 
sense if we model the 
specularities.

Figure 2. Illustration of gamut extension used for speculariti
The gamuts are actually polytopes in 3 dimensional RGB space

While very simple, the method naturally models re
specularities which are always a combination of t
specular reflection and the underlying body reflection. B
the specular reflection and the body reflection are part of
convex hull, and thus any convex combination of them
also in the hull. Finally, to include the specular reflection
colored metals (brass, copper, gold), we add multiples of
reflections for these substances into the canonical ga
The color of specularities is still quite restricted, bei
somewhere between white and the color of copper, but
existence of metallic specularities will now work with
instead of against, the information provided by the ot
colors.

The new canonical gamut is then used as part
standard RGB based gamut-mapping algorithms. As in
and [21] we used Finlayson's illumination constraint. W
investigate the two methods for choosing a solution fr
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the constraint set that were mentioned above, those b
the original maximum volume method and the average o
the feasible set. When the illumination constraint is us
this set is not precisely convex, and we numerica
integrate to obtain the average.

This method works well even if there are n
specularities. The work of Finlayson and Hordley4 suggests
that the most important facets in the non-specular case
the ones adjacent to the origin; specifically the ones 
modified by our method. The arguments in that work a
imply that our method should be at least as strong as 
chromaticity-based gamut-mapping algorithm, regardles
the presence of specularities. Of course, when specula
are present, our algorithm should excel. Finally, when th
are strong un-clipped specularities, our algorithm estima
the overall illuminant brightness better than all oth
algorithms.

Experiments and Results

We have tested the above methods both on synthetic im
data, and on real image data. For the former, we gener
data without specularities, with non-metallic speculariti
and with a mixture of metallic and non-metall
specularities. To model the metallic specularities 
measured the specular reflectance of a number of met
objects using a Photoresearch PR-650 spectraradiom
The metallic samples included several brass and co
surfaces, as well as gray metallic surfaces such as alum
and stainless steel. We modeled non-specular reflect
using a database of roughly 2000 reflectance spe
obtained from a number of sources including some of 
own measurements. For each simulated "world" we ran
the algorithms on 200 randomly selected groups o
surfaces under randomly selected illuminants. Co
constancy on such a small number of surfaces is difficul
average, and thus doing well requires specularities. For 
set of generated data we also simulated pixel clipping.

We provide the results of the algorithms using tw
different error metrics. The first measures the ability of 
algorithms to estimate the chromaticity of the illumina
Here we consider the illuminant RGB and th
corresponding estimate thereof as vectors in RGB sp
and compute the angle between these two vectors
degrees. The second error metric is simply the Euclid
distance between these two vectors.

In general, the results are very encouraging. We 
that the original CRULE algorithm (with Finlayson
illumination constraint) and the Retinex method work w
when there are good specularities, but that these algori
are more sensitive than the others to clipping, and give p
illuminant brightness results (Table 3). On the other ha
the new algorithms, as exemplified by "SP-ECRUL
AVE", do not have these problems. We also found, 
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surprisingly, that if metallic specularities are present, th
modeling metallic specularities yields better results. On 
negative side, the error in the illuminant chromatic
estimates increases somewhat when such surfaces
absent. Further work is needed to characterize this trade

We also provide some results on real images from 
data sets (Table 4). The first data set consisted of sc
with and without significant specularities, but with fe
metallic specularities. In this data set there are 33 sce
taken under 11 different illuminants. Several images w
culled due to problems, leaving 321 test images. For 
second set we used seven scenes with metallic specula
under the same 11 illuminants. Again, some images w
culled, leaving 71. The images were taken at low eno
light to minimize clipping due to specularities, and t
dynamic range was extended by averaging multiple fram
This allows us to investigate strong specularities, and 
possibilities afforded by higher dynamic range cameras.

The image data results generally confirm the resu
found with synthetic data. Overall the gamut mappi
algorithms do well compared to the other algorithms on r
data. However, part of their success may be due to the
of images with extended dynamic range, and theref
future work will look at the effect of artificially clipping
such data.

Conclusions

We have considered computational color constancy in 
context of scenes with both specular and non-spec
surfaces. We have also proposed an algorithm which
explicitly designed to make use of both types 
information. This is in contrast to most current col
constancy algorithms which generally focus on using o
the matte surfaces or only the specularities. Unlike ot
algorithms using specular information, our method does 
need to identify groups of pixels as corresponding to 
same surface under different geometry. Instead, the me
implicitly uses the information inherent in the brightness
the image pixels. However, since the method extends
already capable gamut mapping approach, the method
give good results even when specularities are not presen
addition, our method is easily extended to deal w
specular reflection from colored metals, and is the first co
constancy algorithm to do so. The new algorithms yi
good results on both synthetic and real image data.
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Table 1: Key to algorithms

ECRULE CRULE with illumination constraint
MV Solution maximizes volume of mapped set
AVE Solution is the average of feasible set
Retinex Estimate illuminant color by the maximum of each channel.
Gray World Estimate illuminant color by image average
Table 2: Average angular error in RGB space of illuminant estimate (generated data)

No specularities Simulated
specularities

Simulated
specularities and

simulated
clipping

Simulated metallic
and non-metallic

specularities

Simulated metallic
and non-metallic
specularities and

clipping
ECRULE-MV 8.4 3.63 8.93 7.44 9.29
ECRULE-AVE 8.0 6.55 8.43 7.00 8.57

SP-ECRULE-MV 8.6 4.22 9.37 7.69 9.56
SP-ECRULE-AVE 7.6 3.84 8.03 6.46 8.59

MET-ECRULE-MV 9.4 5.88 10.49 7.41 10.17
MET-ECRULE-AVE 8.7 7.01 9.55 6.25 9.52

Retinex 13.2 5.12 12.88 10.30 12.80
Gray World 11.9 6.66 13.38 9.95 12.41

Color by correlation 8.0 5.12 9.24 6.81 9.08
Neural Net 7.3 6.12 8.13 6.59 8.52
Table 3: Average RMS error of illuminant RGB estimate (generated data)

No specularities Simulated
specularities

Simulated
specularities and

simulated
clipping

Simulated metallic
and non-metallic

specularities

Simulated metallic
and non-metallic
specularities and

clipping
ECRULE-MV 147 1103 159 4574 163
ECRULE-AVE 125 2020 149 7653 152

SP-ECRULE-MV 206 166 241 1944 237
SP-ECRULE-AVE 138 236 169 3327 176

MET-ECRULE-MV 227 204 261 478 257
MET-ECRULE-AVE 161 171 205 905 204

Retinex 201 884 198 3487 204
Gray World 141 1065 173 3046 162
Table 4: Average angular error in RGB space of illuminant estimate (image data).

Images without
metallic surfaces

Images with
metallic surfaces

ECRULE-MV 5.3 12.0
ECRULE-AVE 6.6 11.2

SP-ECRULE-MV 6.3 10.9
SP-ECRULE-AVE 6.4 10.9

MET-ECRULE-MV 7.2 10.4
MET-ECRULE-AVE 7.5 10.6

Retinex 7.8 13.9
Gray World 12.0 16.4

Color by correlation 11.0 13.6
Neural Net 9.8 12.2
5118
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