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Abstract

There are two broad classes of colour constancy algorithms:
statistical and physics-based. The former attempt to
correlate the statistics of the colours in an image with
statistical knowledge about light and surfaces. If there is
good colour diversity in a scene then the statistical approach
often works well. The latter, physics-based algorithms are
founded on an understanding of how physical processes
such as specularities and interreflection manifest themselves
in images. The theory behind physics-based algorithms is
both elegant and powerful. Indeed, colour constancy
becomes possible even in scenes with as few as two
surfaces. Unfortunately the theory rarely translates into
practice; most physics-based algorithms do not work outside
the lab.

In this paper we combine both statistical and physical
knowledge in a new colour constancy algorithm. First, we
observe that, statistically, the chromaticities of most
illuminants are tightly clustered around the Planckian locus.
Second, we make use of the physics-based dichromatic
model of image formation. This model predicts that the
chromaticities corresponding to a single convex, uniformly
coloured, surface fall along a line in chromaticity space.
This line is spanned by the body chromaticity (the colour of
the surface) and the interface chromaticity (the colour of the
shiny part of the surface i.e. the colour of the light). Simply
by intersecting the dichromatic chromaticity line with the
illuminant locus our algorithm arrives at an estimate of
illumination.

Remarkably, (yet by definition) our algorithm can
estimate the colour of the light even when there is just a
single surface in a scene (the lowest colour diversity
possible). Moreover, and more importantly, experiments on
real images demonstrate that estimation accuracy can be
very good.

1. Introduction

Colour constancy algorithms attempt to decouple the colour
of light from the colour of surfaces in images. By definition
then colour constancy algorithms cannot work if the same
image is formed from different illuminant–surface pairs. A
red wall viewed under white light is the same as a white
wall viewed under red light. However, this apparently sound
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theoretical argument turns out to be difficult to demonstrate
in practice.

For example, Gilchrist and Ramachandran1 have shown
that observers can distinguish between white rooms
illuminated by red light and the converse. This is only
possible if the physical stimulus reaching the eye differs for
the two viewing conditions. Indeed, it does; it is argued that
the effect of interreflected light provides sufficient extra
information to discriminate between the two scenes.

While interreflection has been shown to be theoretically
useful,2 it is hard to find and use in real images. Fortunately,
many physical effects manifest themselves in images and
each helps us distinguish between apparently
indistinguishable scenes (e.g. a red room under white light
and vice versa). In the context of this paper we show how
the physics of specular highlights coupled with the statistics
of illumination can be used to estimate the prevailing scene
illumination.

Many authors, notably Shafer3 and Tominaga and
Wandell4,5 have proposed a dichromatic model of
reflectance. Under this model the light reflected from a
surface is comprised of two parts: body and interface
reflection. The body part models conventional matte
surfaces: light enters the surface, is modulated by the
surface reflectance function and then exits. The interface
reflectance models highlights. Here, the incident light does
not enter the surface but is rather reflected in a mirror like
way. As such the interface reflection has the same spectral
characteristics as the illumination. The shape of the surface
dictates the relative proportion of body and interface
reflection that is scattered in different directions.

In terms of a camera image, each RGB for a surface is
also comprised of two parts: RGB-body and RGB-interface.
Together RGB-body and -interface span what is called the
dichromatic plane and, because light is additive, all RGBs
for a surface must fall on this plane. All of this in turn
implies that the chromaticities of a surface fall along a line
in chromaticity space. Somewhere on this line is the
chromaticity for RGB-interface i.e. the chromaticity of the
illuminant.

Because the dichromatic chromaticity line contains the
chromaticity of the illuminant it follows that the illuminant
might be estimated by intersecting two chromaticity lines
(for two surfaces). Indeed, this algorithm is well known and
has been proposed by several authors (including Tominaga
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and Wandell,4 Lee7 and Tong and Funt8). Unfortunately,
these algorithms do not work well in practice. There are two
reasons for this failure. First, the intersection calculation is
highly sensitive to image noise. In particular, if two
dichromatic lines have similar orientation then small
orientation changes lead to large shifts in the intersection
point and so to large estimate uncertainty. The second
problem is that one needs to find two specular surfaces in
images. While this is easy in ‘toy’ images, perhaps
containing highly coloured saturated spheres, it has proven
hard to achieve given images of the natural world.

To get around these problems we will use a single
surface and so a single dichromatic line. But, in doing so the
problem of illuminant estimation apparently becomes ill-
posed. In order to progress further we need a second
constraint. In previous work many authors9,10 have argued
that the colours of illumination is limited. A saturated purple
light while physically possible is practically speaking
impossible. So, allowing it to be a possibility makes no
sense. In the context of this paper the range of illuminants is
modelled by the Planckian locus. As readers will know this
is simply a line in colour space which curves from yellow
indoor lights through to whitish outdoor illumination and
thence to blue sky. Significantly we check the veracity of
the locus constraint by plotting the chromaticities of 172
measured lights including daylights and fluorescents. These
are all seen to cluster tightly about the Planckian locus.

If the illuminant chromaticity lies somewhere on the
dichromatic line of a surface and it also lies somewhere on
the Planckian locus then it follows that it can be found by
intersecting the dichromatic line with the Planckian locus.
Indeed, this simple intersection is at the heart of our new
colour constancy algorithm.

By definition our algorithm can solve for the illuminant
(and so colour constancy) given the image of one surface.
Moreover, so long as the orientation of the dichromatic line
is far from that of the illuminant locus then the intersection
should be quite stable. As we shall see, this implies that
colours unlikely to be illuminants, e.g. greens and purples,
can be used to estimate the illuminant. We point out that
green is a dominant colour in the natural world and so our
algorithm can potentially be applied to many real world
images.

To test our algorithm we take images of green leaves
under three lights: D65, TL84, and A (blue, white and
yellow lights). In all cases our algorithm returns an excellent
illuminant estimate.

The rest of the paper is organised as follows: Section 2
provides a brief review of colour image formation, colour
constancy and the dichromatic reflection model. Section 3
describes the new algorithm in detail. Section 4 gives some
experimental results.

2. Background

An image taken with a linear device such as a digital colour
camera is composed of sensor responses that can be
described by:
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where λ is wavelength, p is a 3-vector of sensor responses
(RGB pixel values), C  is the colour signal (the light
reflected from an object), R is the 3-vector of sensitivity
functions of the device. Integration is performed over the
visible spectrum ω.

The colour signal C(λ ) itself depends both on the
surface reflectance S(λ) and the spectral power distribution
E(λ). For pure Lambertian (matte) surfaces C(λ ) is
proportional to the product S(λ )E(λ) and its magnitude
depends on the angle(s) between the surface normal and the
light direction(s). The brightness of Lambertian surfaces is
independent of the viewing direction.

In real life, however, most objects are non-Lambertian,
and so have some glossy or highlight component. The
combination of matte reflectance together with a geometry
dependent highlight component is modelled by the
dichromatic reflectance model.3,4,5,6

The dichromatic reflection model for inhomogeneous
objects states that the colour signal is composed of two
additive components, one being associated with the
interface reflectance and the other describing the body (or
Lambertian) reflectance part.3 Both of these components can
further be decomposed into a term describing the spectral
power distribution of the reflectance and a scale factor
depending on the geometry. This can be expressed as:

( ) ( ) ( ) ( ) ( )λθλθλθ BBII CmCmC +=,  (2)

where CI(λ) and CB(λ) are the spectral power distributions
of the interface and the body reflectance respectively, and mI

and mB are the corresponding weight factors depending on
the geometry θ which includes the incident angle of the
light, the viewing angle and the phase angle.

It can be seen that the colour signal can be expressed as
the weighted sum of the two reflectance components and the
colour signals for an object are thus restricted to a plane. In
fact, as colour signals cannot be negative and no more light
can be reflected from an object than is cast on them (the
dichromatic model is restricted to non-fluorescent objects),
all colour signals of an object lie on a parallelogram.3

Making the roles of light and surface explicit, equation
(2) can be further expanded to:

( ) ( ) ( ) ( ) ( ) ( ) ( )λλθλλθλθ ESmESmC BBII +=, (3)

As for many materials, the index of refraction does not
change significantly over the visible spectrum it can be
assumed to be constant. SI(λ) is thus a constant and equation
(3) becomes:

( ) ( ) ( ) ( ) ( ) ( )λλθλθλθ ESmEmC BBI += ',           (4)

where mI’ describes both the geometry depending weighting
factor and the constant reflectance of the interface term.

By substituting equation (4) into equation (1) we get the
device’s sensor responses for dichromatic reflectances:
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Figure 1. Distribution of 172 illuminants and Planckian locus in xy chromaticity plot
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Figure 2. Intersection of dichromatic plane with Planckian locus for a green and a yellow surface
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where R, G, and B are the red, green, and blue pixel value
outputs of the digital camera. Because the RGB of the
interface reflectance is equal to the RGB of the illuminant E
we rewrite (6a) making this observation explicit:
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Though the dichromatic reflection model makes several
assumptions and simplifications it accurately describes
many materials, including plastics, paints, ceramics, leaves,
and others.6

Dichromatic Colour Constancy
As can be seen from equation (6) the RGBs for a

surface lie on a two-dimensional plane one component of
which is the RGB of the illuminant. If we consider two
objects within the same scene (and assume that the
illumination is constant across the scene) then we end up
with two RGB planes. Both planes however contain the
same illuminant RGB. This means that their intersection
must be the illuminant itself. Indeed this is the essence of
dichromatic colour constancy.4

 However, though theoretically sound, dichromatic
colour constancy algorithms only perform well under
idealised conditions, for real images the estimate of the
illuminant RGB turns out not to be that accurate. The reason
for this that is in the presence of a small amount of image
noise, the intersection of two dichromatic planes can change
quite drastically. Hence dichromatic colour constancy tends
to work well for highly saturated surfaces taken under
laboratory conditions but much less well for real images
(say of typical outdoor natural scenes). In fact, the authors
know of no dichromatic algorithm which works well for
such images.

3. Single-Surface Dichromatic Colour
Constancy

The novel colour constancy algorithm proposed in this
paper is also based on the fact that many objects exhibit
highlights and that the light coming from these objects can
be described by the dichromatic reflectance model.
However, in contrast to the dichromatic algorithms
described above and all other colour constancy algorithms
(save that of Yuille11 which works only under the severest of
constraints), it can estimate the illuminant even when there
4109
is just a single surface in the scene. Moreover, rather than
being an interesting curiosity this single surface constancy
behaviour actually represents a significant improvement
over previous algorithms. Perhaps, colour constancy is
sometimes best calculated using the information from only
one surface.

We make use of the fact that the RGBs from an object
fall on a plane that contains the illuminant RGB. However,
in order to be able to extract this illuminant vector, a further
constraint has to be used.

If we look at the distribution of typical light sources
then we find that they occupy a highly restricted region of
colour space. We took 172 measured light sources,
including common daylights and fluorescents, and 100
measurements of illumination reported in [10], and plotted
them, in Figure 1, on the xy chromaticity diagram. It is clear
that the illuminant chromaticities fall on a long thin “band’’
in chromaticity space. As might be expected, this band is
very close the Planckian locus of black body radiators, even
though it is technically possible to manufacture light sources
that do not possess this characteristic. Indeed, it is so close
we propose that the Planckian locus can be used as an
illuminant constraint.

Single-surface dichromatic colour constancy proceeds
in two simple steps. First, the dichromatic plane for a single
surface is calculated and this plane is projected to a line in
chromaticity space. In the second step the dichromatic line
is intersected with the Planckian locus. The intersection
point defines the chromaticity of the illuminant.

In proposing this algorithm we are well aware that it
will not be a panacea. Rather, it will work well in some
circumstances and not others. Indeed, it is well known that
all dichromatic colour constancy algorithms tend to work
poorly when they rely on measurements made from a white
surface. The reason for this is easy to understand. For a
white surface the body and interface colours are the same:
there is no dichromatic line. Rather, there is a dichromatic
point! Moreover, as discussed earlier traditional dichromatic
algorithms, which work by intersecting dichromatic planes,
work poorly when the planes have similar orientations.

  

Figure 3. Plant captured under D65, Illuminant A, TL84 (from left
to right).

It is interesting then to consider our new algorithm and
in particular the conditions under which it will be expected
to work. By looking at the xy chromaticity plot in Figure 1
we can qualitatively predict which surface colours will lead
to good estimates. For green objects the colour signal plane



The Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T
Figure 4. Illuminant estimation plot: top for plant under Illuminant A, bottom under TL84
5110
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and the Planckian locus are approximately orthogonal to
each other, hence the intersection should give a very reliable
estimate of the illuminant. A small amount of noise will not
effect the intersection. Good performance is also predicted
for purples and magentas. However, when colours are in the
yellow and blue illuminant regions the orientation of the
plane will be similar to that of the locus itself (see Fig. 2),
furthermore it may intersect twice. It is also clear that the
results will be more accurate if we have objects with
saturated colours as the colour signal plane will be better
defined.

This observation, that the solution for green surfaces
will be an accurate one, is actually very welcome because if
we look around we will notice that “the world is green”, ie.
many objects in nature are green: grass is green, bushes and
forests are predominately green, etc. Consequently, we can
expect good results for the new algorithm when applied to
many natural images.

4. Experimental Results

In order to prove the validity of our algorithm and to
evaluate its performance, a set of experiments were carried
out. An Agfa Studiocam was used to capture a green plant
in a lightning cabinet with a black background under three
different illuminants: a daylight D65 simulator, TL84
(fluorescent light) and Illuminant A (tungsten). The three
resulting images are shown as Fig. 3, the different
appearance due to different illumination is evident from
these images. It is also evident that there are significant
highlights.

The best fitting RGB dichromatic planes for the images
were computed using singular value decomposition.4 The
computed planes were then projected to lines on the rg
chromaticity diagram. Since we do not know the spectral
sensitivities of our camera the Planckian locus was
approximated by a cubic spline fitted to the three
chromaticities of the illuminants (D65, TL84 and A) in rg
chromaticity space. Operating in this way also had the
advantage that the correct answer was exactly represented
on our illuminant locus. A similar cubic spline fitting of the
xy chromaticities of our illuminants (measured using a
spectro-radiometer) returned a locus which was very similar
to the actual Planckian locus.

The intersection of the dichromatic plane with the
approximated Planckian locus gives the estimate of the
illuminant. The process is shown in Figure 4 (for both the
image taken under Illuminant A and TL84) where the
distribution of the colour signals (blue asterisks) is plotted
together with the resulting dichromatic plane (green line)
and the Planckian locus (blue line) in an rg chromaticity
diagram; the location of the real illuminant is shown as a red
cross. It can be seen that the dichromatic plane intersects
with the locus giving an illuminant estimation and that this
estimation is very close to the actual illuminant.

To further demonstrate the performance of the
algorithm, a Macbeth Checker Chart12 was captured under
the same three illuminants as the plant (the images are
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shown in Figure 5). The D65 image was chosen to be the
correct answer i.e. to represent the correct colours that
should be returned by a colour constancy algorithm. We set
out to correct the TL84 and Tungsten Macbeth checkers
using the illuminant estimates calculated from the plant
images. Correcting the plant images themselves turned out
not to be interesting since correction accuracy is hard to
assess given images of one colour.

 (a) Macbeth Checker Chart under D65

 

        (b) under Illuminant A       (c) under TL84.
Figure 5.

An estimate of the illuminant chromaticity was
transformed into scaling factors for mapping the RGBs to
the canonical light. If (r,g,b) denotes the chromaticity
estimated illuminant and (r’,g’,b’) the chromaticity of D65
(b=1-r-g and b’=1-r’-g’) then the scaling factors are
proportional to: (r’/r, g’/g, b’/b). That is the estimated white
point is mapped to the white point of D65. Because only the
chromaticity of the light is estimated (it is not possible to
calculate absolute brightness13) the average image pixel
value for the transformed images is set equal to the average
for the D65 checker. Note that this is a single correction
factor based on the global average of all the red, all the
green and all the blue pixel values. It controls overall
brightness but leaves image colours unchanged.

This correction procedure enables us to explore our
algorithms performance on a whole gamut of colours (18
chromatic and 6 neutral colours) and so we can more easily
visually assess the algorithm’s performance.

The results of correcting the Checker images based on
estimates of the illuminant calculated from the plant images
are shown Figure 6. Clearly the colours shown in Figure 6
are very close to those shown in Figure 5a (the actual
colours under D65). It is evident that the results we get
prove to be very good and all the colours are corrected quite
accurately. For comparison we have also corrected the
images by an illuminant estimation based on running the
grey-world algorithm14 on the plant images. The results of
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this are shown in Figure 7. As one would expect the grey
world algorithm works very poorly indeed. The average of
the plant images regardless of the illuminant is basically
green! Also, a correction based on Land’s colour constancy
algorithm,15 here referred to as Max. RGB and its results
shown in Figure 8, yields significantly inferior results.

Figure 6. Macbeth Checker Chart under Illuminant A and TL84
corrected for D65 using the novel algorithm.

Figure 7. Macbeth Checker Chart under Illuminant A and TL84
corrected for D65 using grey-world algorithm.
7112
Figure 8. Macbeth Checker Chart under Illuminant A and TL84
corrected for D65 using Max. RGB algorithm.

The visual results are also confirmed by a numerical
comparison given in Table 1 where the average error of the
Macbeth colour patches and its standard deviation in rg
chromaticity units is given for the three algorithms.

Table 1. Mean errors and standard deviations (in
brackets) of the 24 Macbeth colours corrected based the
mentioned algorithms

TL84 image Illum. A image
Single Surface CC 0.0416 (0.0190) 0.0413 (0.0311)

Grey-world 0.1808 (0.0460) 0.0987 (0.0298)
Max. RGB 0.0974 (0.0224) 0.0651 (0.0263)

5. Conclusion

In this paper we have developed a new algorithm for colour
constancy which has a number of novel features. First, the
algorithm works even when an image only contains a single
surface (the most extreme test for all constancy algorithms).
Second, the algorithm is refreshingly simple. The set of all
possible lights, modelled here as the Planckian locus, is
intersected with the set of all image chromaticities. By
virtue of the dichromatic reflectance model the latter is a
line in chromaticity space which must contain the illuminant
chromaticity. By intersecting this line with the Planckian
Locus we estimate illumination. That is all there is to our
algorithm. Third, and perhaps most novel overall, our
algorithm is shown to work well on real images.
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