
The Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T
White Point Estimation for Uncalibrated Images
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Abstract

Color images often must be color balanced to rem
unwanted color casts. We extend previous work on usi
neural network for illumination, or white-point, estimatio
from the case of calibrated images to that of uncalibra
images of unknown origin. The results show that 
chromaticity of the ambient illumination can be estima
with an average CIE Lab error of 5∆E. Comparisons are
made to the grayworld and white patch methods.

Introduction

To remove a color cast from an image so that it is prop
color balanced, the color of the scene illumination mus
estimated. Illumination estimation in this sense is a
commonly referred to as white point estimation. Even w
the imaging device’s characteristics are fully know
accurate illumination for color cast removal has prov
difficult, but there has been progress.1–6 In this paper, we tes
a neural-network-based method for estimating 
illuminant in the general case in which the imagi
parameters are unknown.

In the case of digital photography images, the cam
can be calibrated so that the sensor sensitivities as a fun
of wavelength are known as well as their response 
function of intensity. Many existing color constan
algorithms1–6 depend on having calibrated sensors. In m
situations—images downloaded over the Internet or scan
from film—the imaging characteristics are either unkno
or else, as in the case of film, very difficult to control. 
previous work,7 we proposed a computational framewo
for color correction of uncalibrated images given 
estimate of the illumination chromaticity. In this paper, 
test how well various illumination-estimation algorithm
(greyworld, white patch, neural net, and bootstrappi
work when presented with uncalibrated image data.

Unknown Imaging Parameters

Calibrating specifies three important aspects of a 3-cha
color imaging system: (1) the response of each channel
function of intensity; (2) the white balance, which is 
input spectrum which creates equal, and usually maxi
output across all 3 channels; and (3) for each channel
relative sensor sensitivity as a function of wavelength. 
will assume there is no spatial variation in the
characteristics.
sors
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In terms of the channel response as a function
intensity, it is possible for this function to be an arbitra
function but generally it will be monotonic. However, w
will restrict our attention to “gamma” functions of the form
I=SDγ, where I is the resulting luminance, S is the cam
gain and D is a pixel value in the 0..1 range.

Such functions are typical in imaging system
Poynton8 discusses gamma in detail. In what follows, w
will assume that any non-linearity in the sensor response
been created by gamma, but that the value of gamma is
known since it generally differs between imaging system
We will term images for which gamma does not equal un
to be ‘gamma-on’ images. Linear images are ‘gamma-
and have gamma equal one.

For a gamma-on image, we have shown7 that it is
possible to color correct it by a diagonal transformat
without first linearizing the image. The off-diagonal term
of the general image transformation (i.e. the best linear
are larger for gamma-on images than gamma-off ones
the average error of a diagonal transformation (wh
ignores the off-diagonal terms) is greater. However, 
perceptual error induced by such a transformation is 
small. Also, although gamma introduces a color shift, 
shift is independent of pixel intensity. Finally, diagon
color correction9 and application of gamma ar
commutative. As a result, we can color correct gamma
images in the same way we as linear, gamma-off images

The second problem in handling uncalibrated imag
concerns the imaging device’s color balance. We ass
that the device was balanced so that it produced equal R
values for a white patch under some chosen illuminant, 
that we do not know which illuminant it was. In theor
color correcting an image taken with an unknown bala
does not pose a problem, since the calibrating coefficie
(used to scale the sensors) can be absorbed into the dia
transformation required for color correction. In effect, t
color balance problem folds in with the illumination
However, finding the resulting diagonal transformati
could prove difficult for the algorithms4,5 whose results
depend on an expected set of illuminants. The combi
balance-illumination transformation will likely fall outsid
the range of expected illuminants thereby caus
inaccurate results.

The third aspect of working with uncalibrated images
not knowing the sensor sensitivity functions. Sensors di
significantly, even for the simple case of digital came
balanced for the same illuminant. Two camera mod
balanced for the same illuminant will by definition have t
same response to white, but can have different sen
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responses to other colors. Figure 1 shows the differe
between responses of a SONY DXC-930 and a Ko
DCS460. To eliminate the effects of noise or other artifa
from the comparison, RGB values were synthesized u
the sensor sensitivity curves of the two cameras along 
the surface reflectances of the 24 Macbeth Colorchec
patches. Both cameras were balanced for the s
illuminant. Figure 1 plots the sensor responses in 
chromaticity space:

r=R/(R+G+B) and (1)

g=G/(R+G+B) (2)

It can be seen in the figure that the responses v
significantly. This variation in sensor response c
adversely affect color constancy algorithms that rely 
prior distributions of sensor responses.
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Figure 1. Comparison of rg-chromaticities obtained by tw
cameras balanced for the same illuminant.

Illumination-Estimation Algorithms

We test several different illumination-estimation algorithm
on a database of ‘uncalibrated’ images. The images 
uncalibrated in the sense that the imaging characteristic
not provided to the algorithms, even though we have 
calibration parameters available so that we can evaluate
results. In particular, we test the white patch algorit
(WP), a version of the grayworld algorithm (GW) and tw
neural-network-based methods. The gamut-constr
methods3,4 were not tested because they require informat
about the expected gamuts of reflectances or illuminants

 The image database contains 116 images taken w
Kodak DCS-460 camera and 67 images scanned wi
Polaroid Sprintscan 35+ slide scanner from various f
types: Kodak Gold, Kodak Royal, Agfa Optima, Polaro
298
ce
k

ts
ng
ith
er

me
g-

ry
n
n

s
re
are
he
the

int
n

 a
 a

HiDef and Fuji Superia. The slides were scanned usin
‘generic’ pre-defined scanner setting. This setting 
consistent with the assumption of unknown pre-process
Using the manufacturer’s setting for each film type wou
have allowed the scanner driver to accomdate for 
different film characteristics.

We divide the image database into two sets, the first
training and the second for testing. The training set cont
102 images and is used for training the neural network 
computing the average color for use in the datab
grayworld algorithm. The test set contains the other 
images (57 DCS images and 24 slides).

For the GW algorithm, the chromaticity of th
illuminant is determined from the average of all the pix
in an image. GW assumes that the average color of
scene is gray and that any departure from this average in
image is caused by the color of the illuminant. The aver
is computed relative to the average chromaticity compu
using all pixels in the training database. Using the datab
average as the definition of gray compensates for the 
that gray may not have exactly equal r and g chromaticit
Nonetheless, GW’s performance will be poor when the 
images have different average distributions than the o
used for computing the database average.

The WP algorithm determines white, and hence 
illuminant color, as the maximum R, maximum G a
maximum B found in the image. The WP algorithm h
roots in the family of retinex algorithms,1 but it is only
equivalent to it under restricted circumstances.

Two differently trained neural networks were used f
illumination estimation. The network architecture was t
same in both cases; namely, a Perceptron with two hid
layers as we have previously described.10,11 The networks are
trained to estimate the chromaticity of the illuminant bas
on the binarized rg-chromaticity histogram of an inp
image. The 3600-node input layer is fed binary valu
representing the presence or absence of chromatic
falling within a particular chromaticity bin. The first hidde
layer contains 50 neurons and the second layer 20 neu
The output layer consists of only two neurons represen
the chromaticity of the illuminant. All neurons have 
sigmoid activation function.

Both neural networks were trained using the ba
propagation algorithm. The error function for training a
testing is the Euclidean distance in rg-chromaticity sp
between the actual illuminant and its estimate.

The difference between the training of the tw
networks concerns the method of determining the ac
illuminant. For the first network, the illuminant chromaticit
is simply measured from the reference white standard 
was contained within each image. This provides an accu
value for the illuminant’s chromaticity. For the secon
network, a less accurate method is used, which we h
called the bootstrapping method.11 The bootstrapped
network uses the GW algorithm to “measure” t
chromaticity of the illuminant for training. Clearly, th
illuminant value determined by GW will only be
approximately correct; nonetheless, previous experime
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with calibrated image data have shown that the netw
“learned” to make a better estimate than the simple G
algorithm used to train it. Our new experiments describ
below show that bootstrapping works even for the m
general case of non-linear images acquired from vari
sources. This approach allows us to train a neural netw
for a range of uncalibrated cameras and scanners, wit
explicitly having to measure white patches in the set
training images.

Experimental Results

The algorithms presented above were tested on an im
database containing 81 images. Figures 2 and 3 show
relative performance of the color constancy algorithms. T
figures show the average errors over the whole test se
well as for each type of input (i.e. for DCS images a
slides).

In Figure 2, the average errors are computed in the
chromaticity space, the same space in which the ne
network was trained.  “Nothing” refers to assuming that 
illuminant is the one for which the device is calibrated a
reflects the variation in the chromaticity of the illumina
across the test set of images, relative to white (locate
r=g=1/3 in rg-chromaticity space). “NN” refers to the neu
network trained with accurately measured illumination da
while “Bootstrapped NN” refers to the same netwo
trained using GW illumination estimates.
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Figure 2. Average errors measured in rg-chromaticity space

Figure 3 presents similar results, but with the er
measured in CIE Lab space. The conversion from the R
space to CIE Lab assumes the images are to be viewed
sRGB-compliant9 monitor.
”
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Figure 3. Average CIE Lab ∆E space between actual an
estimated illuminant fixed to the same L* value.

Discussion

Previous studies10,11 based on calibrated, linear image da
have shown that a neural network can accurately estim
the illumination chromaticity. Often we must work wit
uncalibrated image data, so we trained and tested se
algorithms on uncalibrated data, but in a controlled man
On this test data, the neural net average error is 5.14∆E. We
believe this to be useful for removing color casts fro
images of unknown origin. In the tests with th
bootstrapping method of training the neural network, the ∆E
error increased to 9.38. Nonetheless, this is better t
either the GW or WP methods and the bootstrapp
method can be applied in situations where accur
measurements of the illuminant chromaticity a
unavailable for training.
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