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Abstract problem. In carrying out colour correction we are really

At an early stage in almost all colour reproduction pipeline§rying to predict _the XYZ that would be induced py the
device RGBs are transformed to CIE XYZs. This trans-€flectance that induced the RGB. No statement is made

formation is called colour correction. Because the XYZ about reflectance in regression, yet we would like to make

matching functions are not a linear combination of deviceSuch a statement since reflectance is at the heart of the
spectral sensitivities there are some colours which look th&olour correction problem.
same to a device but have quite different XYZ tristimuli. ~ In contrast, in lighting matrix colour correction, an al-
That such device metamerism exists is well known, yet thedebraic as opposed to regression formulation, the role that
problem has not been adequately addressed in the colotgflectance plays is made clear. The central assumption in
correction literature. In this paper, we examine in detaillighting matrix color correction is that surface reflectance
the role that metamers play in developing a new colouican be modelled by a linear sum of three basis functions:
correction algorithm. S(A) = 01S(A) + 02592(A) + 0353(}) (where: indexes
Our approach works in two stages. First, for a givenbaSiS function and; is theith Welghtlng Coef'ficient). Rel-
RGB we characteris¢heseto fall possiblecamerametamers.  ative to this assumption, it is straightforward to show that
In the second stage this set is projected onto the XYZ colod®GBs and reflectance coefficients (theweights) are a
matching functions. This results in a set of XYZs any one3 x 3 camera “lighting” matrix transform apart. XYZs are
of which might be the correct answer for colour correc-also linearly related to surface weights by an XYZ lighting
tion. Good colour correction results by choosing the mid-matrix. By pre-multiplying an RGB by the inverted camera
dle of the set. We call the process of computing the set ofighting matrix, surface weights are recovered. By multi-
metamers, projecting them to XYZs and performing selecPlying the recovered sigma weights by the XYZ lighting
tion, metamer constrained colour correction matrix we effectively solve the color correction problem.
Experiments demonstrate that our new method signif-  Unfortunately lighting matrix correction works no bet-
icantly outperforms traditional linear correction methods.ter than least-squares. In fact it can never work any better
Fortheparticularcaseof saturatedolours(theseareamong  since a regression solution must be optimal ( with respect
the most difficult to deal with) the error is halved on aver-to the error that is minimized). However, the lighting ma-

age; the maximum error is reduced by a factor of 4. trix formulation is helpful because it makes the role of re-
flectance explicit and this turns out to be very useful when
1. Introduction we think about how colour correction might be improved.

Specifically, because the approach works by attempting to

The problem ofolour correctionis the problem of map-  fecover reflectance we make a statement, for an individual
ping RGB sensor responses to CIE XYZ tristimulus val- RGB, about whether we think the recovery is “plausible”
ues. Unless device sensitivities are a linear transform ofr ‘implausible”. If, for example, the recovered reflectance
the XYZ colour matching functions (the Luther conditions has negative reflectance values or reflects more than 100%
apply) then perfect colour correction is not possible. ForOf incident light then it is implausible (such reflectances
mally, there exist pairs of colours that look the same to e physically impossible) and so we can predict poor cor-
device, they are device metamers, but they have differerf€ction performance in this case.
XYZs (and vice versa). In this paper, we extend and improve the lighting ma-

Perhapshesimplestwayto dealwith devicemetamerism, trix correction method by enforcing “physical realizeabil-
and that used by most colour correction algorithms, is taty” constraintsTo dothiswe mustmovefrom a3-dimensional
use regression. Here RGBs are mapped to correspondimgodel of reflectance to one that has more degrees of free-
XYZs so that some error criterion is minimised (usually dom. While this will allow us to get round physical im-
root mean square error). Regression is a pragmatic agplausibility it also reintroduces device metamerism: there
proach but it does not explicitly address the metamerisnis more than one physically realizeable reflectance corre-
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sponding to each RGB. To address this problem we, at th&unctions secondf thereflectancelatauseds three-dimensional
first stage in colour correction, characterise the entire set that is, if the matriXM is used to transform data from a
of RGB metamers. In the second stage this set is projectddcally linear area of colour space. Typically camera sen-
down on to the XYZ matching curves to give a set of candi-sors are not linearly related to XYZs. Nor are reflectances
date XYZs (for colour correction). Of course to complete 3-dimensional. So, the error in (2) is non-zero.
colour correction a single answer must be chosen from this  The linear transformation matriM, will of course, de-
set. We propose that the centroid, or “middle” of the candi-pend on the data-set used to obtain it. There is therefore a
date set is an good choice to make since it mitigates againstade-off when using least squares: colours which appear
the worst case error. The process of solving for the sefrequently (in the training set) are corrected well, those that
of RGB metamers, then characterizing the correspondingppear less frequently are corrected less well. Because
set of XYZs and finally choosing a single representativethere are more colours clustered around the achromatic
member of that set is callddetamer Constrained Colour axis than there are at the extremes of the object colour
Correction solid, desaturated colours tend to be corrected with much
Experiments demonstrate that our new metamer conless color error than saturated colours. This said, the chal-
strained correction method significantly outperforms leastienge for colour correction is to reduce the error in correct-
squares correction. It delivers much lower correction erroring the saturated colours without affecting the very good
The greatest performance increase is for saturated colout®lour correction performance which is generally deliv-
(the colours where conventional colour correction worksered for desaturated colours.
least well) where the mean error is reduced by a factor of In thinking about colour correction, and how it might
2 and the maximum error diminishes by a factor of 4. be improved, it is imperative to understand how RGBs and
Importantly, metamer constrained colour correction isXYZs are formed. The real goal of colour correction is to
a very simple procedure to implement. The physical realfind the reflectance that induced an RGB and then to calcu-
izeability constraints can be formulated as linear inequalidate the XYZ for this reflectance. This apparently simple
ties. Moreover, solving for the metamer constrained set ofnsight is the basis for a second linear correction method:
XYZs amounts to maximizing and minimizing a small set lighting matrix colour correction[5].
of linear objective functions. It follows then that metamer A lighting matrix is a 3x3 matrix which is a function
constrained colour correction involves solving a small seof device spectral sensitivities, illumination and, surface
of linear programs for each RGB. Linear programming isreflectance. Let denote the31 x 1 column vectot of
an extremely fast computational procedure. the illuminant, D an operator making a diagonal matrix
In section 2 we review the linear least-squares and linout of a column vectorR the 31 x 3 matrix containing
earlighting matrix correctionmethodsMetamerconstrained  the RGB sensor sensitivities of a set of sensorsBrtte
correction is presented in section 3. Various experiment81 x n matrix: ann-dimensional set of surface reflectance
are reported in section 4. The paper finishes with a shopasis functions, then the lighting matrix (whichrisx 3)
conclusion in section 5. is defined as:

A° =BTD(e)R €))

The role of this matrix becomes clear when considering
The easiest and most straightforward method (e.g. selow reflectancésrelate to RGBs. Let us denote bythe
Horn [3]) for mapping RGB to XYZ is to use hnear n x 1 column vector of the weights, and hythe 3 x 1
transformationin the form of a3 x 3 matrix M satisfy-  sensor response, then:

ing:

2. Linear Colour Correction

X = MR 1) cTBTD(e)R = 0TA® = pT (4)

whereX is a3 x n matrix of XYZ tristimulus values (under 1he lighting matrix informs us that the RGB is anx

a standard illuminant) anR is a3 x n matrix of RGB 3 linear transform from the dimensional surface weight
sensor responses. Having a set of such responses and théctor. Ifn is 3, then the weights can be recovered from
corresponding tristimulus values, one can solvelpin ~ RGB using a simple matrix inverse operation:
theleast squaresense, minimizing the root mean squared e\

error- q g q O'T — pT(A ) 1 (5)

||X — 1\/[R||2 (2) IFollowing convention, spectra are represented here by their values at
31 s_ample points across the visible spectrum @89to 700nm in 10
This approach is guaranteed to deliver good results in tw@m intervals).

L. . 2When linear models are used to represent reflectances, then each par-
cases Only [9! 1]- Firstif the sensor sensitivities of the RG‘B‘ticular reflectance is defined by the weights for these basis functions — the

sensorarealineartransformatiorof the XYZ colour-matching  final reflectance being a weighted sum of the basis functions.
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If we denote the lighting matrix for the XYZ colour match- '
ing functions by(A% )thenanRGB vectorp can be mapped
to the XYZ tristimulusx:

0.8 b

xT = pT(A%) 1(A%) ©

The mapping in (6) is also a simpdex 3 matrix. However,
the role that reflectance plays is explicitly modelled.

0.2

0

3. Metamer constrained colour correction ]
A three-dimensional linear model actually fits a lot of re-  -o4 1
flectances rather well: especially whites and greys and de-
saturated colours. As colours become more saturated so 4w 450 500 550 500 650 700
the model becomes less accurate. Intuitively, this is to be Figure 1 An example of 5 dimensional recovery.
expected, desaturated reflectances are very smooth and so
are composed mostly of low frequency components. Sat-

urated colours tend to have much higher frequency com- .

ponents (e.g. a deep red has almost 0 reflectance in thseecondn — 3 vectors are Metamenp k.)la.leS'. Henc'eforth
blue part of the spectrum and this can shoot up to 70 olve will assume our reflectance basis is in this form:
80% in the longer wavelengths). The 3-dimensional linear
model is insufficiently rich to model higher frequencies.
This failure manifests itself in inaccurate and implausible
reflectance recovery. The recovered reflectance for a sat-
urated colour often has reflectance values that are bigger

than 100% or less than 0% (they reflect or absorb moré-1- Feasibility Constraints

light than was incident). Not all reflectance functions described in eq.(7) are fea-

In order to model saturated colours and so facilitate acsible. Surface reflectance functions mustiom-negative
curate correction higher dimensional models of reflectancgno less than no light is reflected by a surface) lasd than
are needed. However, given an n-dimensional madet ( or equal to ondno more than all light is reflected by a sur-
3) of surface reflectance, the system of equations defineghce}. These conditions restrict the theparameters. The

by the lighting matrix becomes under-determined. Insteadeasible set consists only of reflectances must satisfy these
of a single unique solution a whole set of solutions be-plausibility constraints.

comes feasible. The set of solutions of such a system can

[0'1 02 Og 0--- 0]pTAe = pT
(10)
[00004,05 ...00]TA® =0

be expressed as [6]: Figure 1 shows reflectance recovery subject to con-
straints. The two horizontal solid lineg,= 1 andy = 0,
pT =0TA® =0] A® + 0g A® (7)  denote the area of feasible solutions (non-negative and less
than or equal to one), the solid line shows the original
oy A® = pT (8) reflectance, the dotted line shows the 3D lighting matrix

solution (which in this case has negatives so is not even
T e feasible). The dashed line shows the five dimensional so-
og A" =0 (9 Iution obtained from the 3D solution and the metameric

Hereay is a set of weights characterising reflectances whichlack solution. Notice that as well as being feasible the
account for zero RGB response, they bkeckfor the sen-  3D+metameric black solution is also much closer to the
sor. The final reflectance is then represented as a sum g¢tual reflectance.

sequence ofnetameric blackeflectancesdp) all giving 1S Just one constraint that might usefully be applied. We
zero response to the camera. can also place constraints on theweights themselves.

In Equations (7)-(9) we describe reflectances by thaft could be for example thats, the coefficient control-
part which projects non-trivially on to RGB and that part !mg thg contribution of the 4th basis function, must lie
whichis orthogonabr blackto thecameraAny n-dimensional N the interval[—0.02,0.02]. In order to understand how
b_aS|S setcan b? splitinto tWO parts such that the first 3 ba- 3This is not true for all reflectances (e.g. frorescenteflectances)
sis vectors project non-trivially onto the sensors and thehese however are disregarded here.
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these intervals are chosen we must understand how the r62 constraints. Added to this we need constraints on the
flectance basis functions themselves are derived. Supposgma weights. Assuming reflectanceriglimensional we
that U denotes @81 x m matrix of representative surface need two constraints for each basis function and so need
reflectances; each column Bf contains a single surface 2n additional constraints. Thie= 62 + 2n constraints to-
reflectance. We would like to find3d x n basis ¢ << m) gether are combined in the constraint ma#ixn eq.(13).
B such that linear combinations of the column®oould  Note that the formulation given in (13) allows only “less
be used to approximalg. The technique of characteristic than or equal to” inequalities but that we want “bigger than
vector analysis[4] allows us to find such a basis. Associ-or equal to inequalities” as well. The latter inequalities are
ated withB we have am x m weight matrixW such that:  readily transformed to the former by multiplying the ap-
propriate row ofAo andb by -1.
BW ~ U (11)

whereW is chosen to minimize the approximation error We would like to find the set of XYZs that satisfy all
bp the constraints ilA. That is, we would like to find all re-

(actually it is defined by a least-squares regression matrix)ﬂectances characterized by a weight veetoand project

The minimum ano_l the maximum of glllwe|ghtsets for.eaChthese down onto the XYZ colour matching functions. To
of the basis functions, that is the minimum and maximum

find the set in XYZ space, the objective function (defined
of the rows ofW, serve as the lower and upper bounds forb h h T I
theo weightd. y the vectorc) was chosen to minimise (as well as max-

imise) each of the X, Y, and Z co-ordinates in turn. Specif-

With all these constraints in hand we next show how'ca”yf ¢ is one column of the Ilghtmg matnx for the XyZ

we can use them in colour correction. First we observguncnons (each column of W.hICh defmes the X, Y, and Z
. . ) . ) responses to each of thebasis functions). The result of

that each constraint can be written as an inequality e S .

is optimization is six extreme XYZ co-ordinates.

the reflectance must be less than or equal to 1. Seconcn

we note that there will probably be many reflectances that

satisfy all the inequalities and so we need to choose ona-3: Finding the Centre of Feasible Cube
answer from the set. In making this choice it is reasonq et ys consider the set of all possible XYZs (correspond-
able to suppose that we wish to optimize some error criteing to an RGB) to be the cube enclosing the six extreme

rion. Assuming the error criterion is linear then metamerxyzs. This cubé is a larger estimate of the solution set,
constrained colour constancy can be formulated as a linegfs not all points within the cube necessarily represent a

program. feasible solution.
Selecting a single answer from the cube is straightforward:
3.2. Linear Programming we simply choose the cube centre. This selection mini-

. ingis defined b . lities (h ITrnizes the cost of making an error in either the X, Y or Z
Linear Prog(;an’ln.mmg |sb.ef|r.1e ya;et ofr:.nehq.ua |t|§s( Al oordinates. It mitigates against the worst case correction
isrgiis(:ezszoinm;xilrztiasa(ardc; icgfrt:;;l-mcuon whichis to be min,. Though, we pointoutth_at thg center_of the cube need

’ ' not be feasible. In spite of this, this algorithm (further re-
mincTo (12) ferred to as the LPCC modElnear Programming Centre

o of the Cubg performs rather well. Moreover, because it is
designed to minimize the cost of making a worst case er-
ror it should result in small maximum errors. Experiments
whereA is ak x n matrix of the left side of the inequali- reported later show that this is the case.
ties,o is an x 1 column vector of the unknown reflectance,

b is ak x 1 column vector of the right sides of the inequal- 3 4. centroid of Feasible Set

ities andc is an x 1 column vector defining the objective

function. The reader is reminded thats the dimension The advantage of the feasible cube approach is its sim-
of surface reflectance. plicity. However, we would like to characterise more ac-
The constraints for reflectances addressed above can Krately the feasible solution set. Since, in so doing we
interpreted as two inequalities for each wavelength (eacfhould have a stronger foundation for carrying out colour
reflectance at each wavelengtiustbe non-negative and Correction.

less than or equal to one). Because we are representing 10 to this, We sample the interior points of the cube

reflectances by their values at 31 sample points this givednd for each point check to see if it is feasible (that they
satisfy the constraints in 13). Proceeding in this way we

4The maxima and minima are picked for each weight dimension sep-
arately, therefore the resulting bounds are not “real” in the sense that such 5The cube is constructed so as to cover the extreme XYZs, and so that
a set of weights does not necessarily exist. all faces are parallel to the planes defining the co-ordinate system.

subjecttoAo < b (13)
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ing Macbeth colour checker RGBs to XYZs. The LSQ
correction involves fitting RGBs to XYZs. The 3D correc-

Lo tion answer is based on a 3-dimensional characteristic vec-
08 tor analysis (CVA) of the Macbeth’'s. LPCC and LPSFC
£ both use a 6 dimensional CVA of the colour checker. It
3‘5 06 is clear that the constrained correction methods LPCC and
3 LPFSC perform significantly better; especially, in terms of
204 the maximum error. However, the incorporation of con-
g straints has also reduced the mean error by about 1 delta
T 02 E. For completeness we show the delta Es for each of the
24 patches on the colour checker. It is apparent that the
0.0 R constrained approach can deliver higher error than LSQ.
400 450 500 5%0 600 650 700 But, this is as we might expect since the colour correction

With(t) problem is ill posed. For individual reflectances the LSQ
answer may be better than the unconstrained answer.

Table2 reportsresultsfor trainingonthe Macbethcolour
checker and testing on the Munsells. Overall the perfor-
mance trends are as before. The constrained regression
find a convex cloud of feasible points inside LPCC cube delivers a significantly reduced maximum error rate and
Relative to this cloud, the point that has smallest maximateduces the mean by about 1 delta E.

distance from all other points in the cloud is the XYZ cho- Perhaps the most interesting experimental results are
sen for correction. This model will be referred to as thEreported in Table 3. Here we train on the 41 maximum
LPFSC modellinear Programming Feasible Set Cenjtre  gamutreflectanceetandtestonthe 134saturatedeflectances
(reflectances that are close to the boundary of the object
colour solid). We know that the problem area for colour
correction is the saturated colours and so we might expect
the constrained correction method to work best here. This

is the case. The maximum error is reduced by a factor of

To compare the performance of all the algorithms that havgl compared to the 3D and LSQ correction methods. The

been described, several simulation experiments were Ca- aan error is reduced by a factor of 2

ried out. Figure 2 shows the spectral sensitivities of the The reader will see that the LPESC method returns

;?STZ:(a (\a/\;ihrfgn\tlvti\:g :tsaend d;r:{jogegi‘lr:a%l:;r:rlz tseesttsmv%z]é Lljgea lightly higher error rates than LPCC. This was unexpected.
P he LPCC method models the feasible solutions to the

the Macbeth Color Checker Chart and Munsell colour at- .

. . . colour correction as a cube of XYZs. However, only some
las. In a second experiment, and in order to examine morg , . . :
closely the question of saturated reflectances we selectérc“eno.r boin ts of the cube are actuglly poss_lble S0 one
mightimagine that the LPCC method is suboptimal in some

a set of 134 reflectances which lie close to the boundargense In contrast the LPSFC method works only with the

of the object colour solid. These reflectances were draw? S . .
. ) easible interior points and so should provide a better ba-
from four combined reflectance sets: the Munsells, a set.

. is for colour correction. However, the difficulty here is
of object reflectances [8], a set of natural reflectances [Yﬁn ding the interior points. Our algorithm works by par-
together with a set of Dupont dye reflectances. In order tqi :

. : tioning the interior of the cube and checking feasibility
get good correction performance for this saturated set we . . . ) .
on a point by point basis. If the actual feasible set is very

trained our algorithm on a set of reflectances with as Iarg(?Iat (i.e. not very 3-dimensional) then it is possible that we
\?vr%?? uvtvr?:npors(fg)(fé d -Lr(])l\j\?n \'getr?sl?(%;dcﬁlloafﬂne\;ig??giI to adequately characterise the feasible set and this can
. T Proj lead to poorer correction performance. We are currently

ing functions span the complete range of colours. Qual-

itatively, the 41 reflectances are similar to Macbeth re_developmg methods to deal with this problem.

flectances but they led to better algorithm performance for

Figure Z The camera sensitivities used in the experiments.

4. Results

all algorithms tested. The illuminants used for the exper- 5. Conclusions
iments were CIE standard illuminants D65 and A and a
measured fluorescent illuminant. A set of colour correction algorithms was presented, two

of which are considered to be standard (LSQ and 3D) and
Correction results are summarised in Tables 1 througlwo of which are newmetamer constrained colour cor-
3. Table 1 reports correction CIE Lab error for correct-rection algorithms (LPCC and LPFSC). We believe the
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model LSQ 3D | LPCC | LPFSC
01 1.6629| 1.5371| 0.8242| 1.1306
02 5.8518| 5.7990| 5.3350| 5.3350
03 4.1728| 4.0279| 5.7413| 5.7413
04 45731| 4.8079| 1.5372| 2.2052
05 0.6844| 0.5349| 1.3913| 1.3913
06 8.6639| 9.0111| 3.3010| 2.8917
07 4.4621| 4.7646| 5.5743| 5.6261
08 6.9284| 6.8586| 6.2854| 6.0979
09 3.6974| 3.5421| 2.9690| 2.0814
10 4.6480| 4.5023| 3.1649| 3.6381
11 3.2845| 3.6841| 3.7096| 4.1462
12 8.4166| 8.7749| 7.4726| 6.8340
13 12.1185| 12.0785| 3.2444| 3.3862
14 7.3733| 7.9298| 6.7304| 6.9141
15 11.9203| 11.6026| 4.4801| 4.7297
16 0.8639| 1.3331| 1.4672| 3.3274
17 1.7569| 1.3288| 1.8074| 2.2077
18 12.7408| 13.0432| 4.7075| 4.0180
19 2.0171| 1.8989| 1.9951| 2.0862
20 2.2340| 2.1320| 2.9743| 2.9743
21 2.1263| 2.0405| 3.2006| 3.2006
22 1.4463| 1.3753| 3.1613| 3.1613
23 1.2370| 1.1878| 3.9807| 3.8521
24 0.6889| 0.6584| 2.8924| 2.0325
max 12.7408| 13.0432| 7.4726| 6.9141
min 0.6844| 0.5349| 0.8242| 1.1306
mean 4.7321| 4.7689| 3.6645| 3.7087

Table T Statistics AF values) for the following set-up:

minant: D65, training set: Macbeth ColorCheckerChart (24 re-[5]
flectances), testing set: Macbeth ColourChecker Chart (24 re-

flectances), dimension: 6 (covering 99.8 % variation)

model LSQ 3D | LPCC | LPFSC
max 20.4060| 32.3414| 16.3173| 15.5799
min 0.1977| 0.0688| 0.4390| 0.1961
mean | 5.8408| 6.0043| 4.9052| 4.8511

illu-
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latter improve on the former because they are based on
a better conceptual understanding of the problem itself.
Specifically, the linear correction methods, LSQ and 3D,
assume that colour correction is a 1 to 1 problem. It is
not. Rather there is an intrinsic uncertainty in the correc-
tion. Many metamers project down onto the same RGB.
Yet this metamer set projects non-uniquely on to XYZ.
The constrained metamer approach, of which the LPCC
and LPFSC algorithms are examples, characterise the fea-
sible set of XYZs and provide a means for selecting a sin-
gle answer from within the set.

Importantly our new well founded algorithms for colour
correction deliver improved correction performance. In all
cases error rates are reduced. For the particular case of
saturated colours (the colours that are most difficult to cor-
rect) the mean and maximum error rate are reduced respec-
tively by a factor of 2 and 4 respectively.
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