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Abstract
At an early stage in almost all colour reproduction pipelin
device RGBs are transformed to CIE XYZs. This tran
formation is called colour correction. Because the XY
matching functions are not a linear combination of dev
spectral sensitivities there are some colours which look
same to a device but have quite different XYZ tristimu
That such device metamerism exists is well known, yet
problem has not been adequately addressed in the co
correction literature. In this paper, we examine in de
the role that metamers play in developing a new col
correction algorithm.

Our approach works in two stages. First, for a giv
RGB we characterise these to fall possible camera metamers
In the second stage this set is projected onto the XYZ co
matching functions. This results in a set of XYZs any o
of which might be the correct answer for colour corre
tion. Good colour correction results by choosing the m
dle of the set. We call the process of computing the se
metamers, projecting them to XYZs and performing sel
tion, metamer constrained colour correction.

Experiments demonstrate that our new method sig
icantly outperforms traditional linear correction metho
For the particular case of saturated colours (these are among
the most difficult to deal with) the error is halved on ave
age; the maximum error is reduced by a factor of 4.

1. Introduction

The problem ofcolour correctionis the problem of map-
ping RGB sensor responses to CIE XYZ tristimulus v
ues. Unless device sensitivities are a linear transform
the XYZ colour matching functions (the Luther conditio
apply) then perfect colour correction is not possible. F
mally, there exist pairs of colours that look the same t
device, they are device metamers, but they have diffe
XYZs (and vice versa).

Perhaps the simplest way to deal with device metamerism
and that used by most colour correction algorithms, is
use regression. Here RGBs are mapped to correspon
XYZs so that some error criterion is minimised (usua
root mean square error). Regression is a pragmatic
proach but it does not explicitly address the metamer
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problem. In carrying out colour correction we are rea
trying to predict the XYZ that would be induced by th
reflectance that induced the RGB. No statement is m
about reflectance in regression, yet we would like to ma
such a statement since reflectance is at the heart of
colour correction problem.

In contrast, in lighting matrix colour correction, an a
gebraic as opposed to regression formulation, the role
reflectance plays is made clear. The central assumptio
lighting matrix color correction is that surface reflectan
can be modelled by a linear sum of three basis functio
S(�) = �1S(�) + �2S2(�) + �3S3(�) (wherei indexes
basis function and�i is theith weighting coefficient). Rel-
ative to this assumption, it is straightforward to show th
RGBs and reflectance coefficients (the� weights) are a
3� 3 camera “lighting” matrix transform apart. XYZs ar
also linearly related to surface weights by an XYZ lightin
matrix. By pre-multiplying an RGB by the inverted came
lighting matrix, surface weights are recovered. By mu
plying the recovered sigma weights by the XYZ lightin
matrix we effectively solve the color correction problem

Unfortunately lighting matrix correction works no be
ter than least-squares. In fact it can never work any be
since a regression solution must be optimal ( with resp
to the error that is minimized). However, the lighting m
trix formulation is helpful because it makes the role of r
flectance explicit and this turns out to be very useful wh
we think about how colour correction might be improve
Specifically, because the approach works by attemptin
recover reflectance we make a statement, for an individ
RGB, about whether we think the recovery is “plausibl
or “implausible”. If, for example, the recovered reflectan
has negative reflectance values or reflects more than 1
of incident light then it is implausible (such reflectanc
are physically impossible) and so we can predict poor c
rection performance in this case.

In this paper, we extend and improve the lighting m
trix correction method by enforcing “physical realizeab
ity”  constraints. To do this we must move from a 3-dimensional
model of reflectance to one that has more degrees of f
dom. While this will allow us to get round physical im
plausibility it also reintroduces device metamerism: the
is more than one physically realizeable reflectance co
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sponding to each RGB. To address this problem we, at
first stage in colour correction, characterise the entire
of RGB metamers. In the second stage this set is projec
down on to the XYZ matching curves to give a set of cand
date XYZs (for colour correction). Of course to comple
colour correction a single answer must be chosen from t
set. We propose that the centroid, or “middle” of the cand
date set is an good choice to make since it mitigates aga
the worst case error. The process of solving for the
of RGB metamers, then characterizing the correspond
set of XYZs and finally choosing a single representati
member of that set is calledMetamer Constrained Colour
Correction.

Experiments demonstrate that our new metamer c
strained correction method significantly outperforms lea
squares correction. It delivers much lower correction err
The greatest performance increase is for saturated colo
(the colours where conventional colour correction wor
least well) where the mean error is reduced by a factor
2 and the maximum error diminishes by a factor of 4.

Importantly, metamer constrained colour correction
a very simple procedure to implement. The physical re
izeability constraints can be formulated as linear inequa
ties. Moreover, solving for the metamer constrained set
XYZs amounts to maximizing and minimizing a small se
of linear objective functions. It follows then that metame
constrained colour correction involves solving a small s
of linear programs for each RGB. Linear programming
an extremely fast computational procedure.

In section 2 we review the linear least-squares and l
ear lighting matrix correction methods. Metamer constrained
correction is presented in section 3. Various experime
are reported in section 4. The paper finishes with a sh
conclusion in section 5.

2. Linear Colour Correction

The easiest and most straightforward method (e.g.
Horn [3]) for mapping RGB to XYZ is to use alinear
transformationin the form of a3 � 3 matrixM satisfy-
ing:

X =MR (1)

whereX is a3�nmatrix of XYZ tristimulus values (under
a standard illuminant) andR is a 3 � n matrix of RGB
sensor responses. Having a set of such responses and
corresponding tristimulus values, one can solve forM in
the least squaressense, minimizing the root mean square
error:

kX�MRk2 (2)

This approach is guaranteed to deliver good results in t
cases only [9, 1]. First if the sensor sensitivities of the RG
sensors are a linear transformation of the XYZ colour-matching
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functions, second if the reflectance data used is three-dimensiona
– that is, if the matrixM is used to transform data from
locally linear area of colour space. Typically camera se
sors are not linearly related to XYZs. Nor are reflectanc
3-dimensional. So, the error in (2) is non-zero.

The linear transformation matrixM, will of course, de-
pend on the data-set used to obtain it. There is therefo
trade-off when using least squares: colours which app
frequently (in the training set) are corrected well, those t
appear less frequently are corrected less well. Beca
there are more colours clustered around the achrom
axis than there are at the extremes of the object co
solid, desaturated colours tend to be corrected with m
less color error than saturated colours. This said, the c
lenge for colour correction is to reduce the error in corre
ing the saturated colours without affecting the very go
colour correction performance which is generally del
ered for desaturated colours.

In thinking about colour correction, and how it migh
be improved, it is imperative to understand how RGBs a
XYZs are formed. The real goal of colour correction is
find the reflectance that induced an RGB and then to ca
late the XYZ for this reflectance. This apparently simp
insight is the basis for a second linear correction meth
lighting matrix colour correction[5].

A lighting matrix is a 3x3 matrix which is a function
of device spectral sensitivities, illumination and, surfa
reflectance. Lete denote the31 � 1 column vector1 of
the illuminant,D an operator making a diagonal matr
out of a column vector,R the 31 � 3 matrix containing
the RGB sensor sensitivities of a set of sensors andB the
31�n matrix: ann-dimensional set of surface reflectan
basis functions, then the lighting matrix (which isn � 3)
is defined as:

�
e = BTD(e)R (3)

The role of this matrix becomes clear when consider
how reflectances2 relate to RGBs. Let us denote by� the
n � 1 column vector of the weights, and by� the 3 � 1
sensor response, then:

�TBTD(e)R = �T�e = �T (4)

The lighting matrix informs us that the RGB is ann �
3 linear transform from then dimensional surface weigh
vector. Ifn is 3, then the weights� can be recovered from
RGB using a simple matrix inverse operation:

�T = �T(�e)�1 (5)

1Following convention, spectra are represented here by their value
31 sample points across the visible spectrum (400nm to 700nm in 10
nm intervals).

2When linear models are used to represent reflectances, then eac
ticular reflectance is defined by the weights for these basis functions –
final reflectance being a weighted sum of the basis functions.
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3This is not true for all reflectances (e.g. forfluorescentreflectances)
these however are disregarded here.

The Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and ApplicationsThe Seventh Color Imaging Conference: Color Science, Systems, and Applications Copyright 1999, IS&T
If we denote the lighting matrix for the XYZ colour match
ing functions by(�e

X
)then an RGB vector � can be mapped

to the XYZ tristimulusx:

x
T = �

T(�e)�1(�e

X) (6)

The mapping in (6) is also a simple3�3 matrix. However,
the role that reflectance plays is explicitly modelled.

3. Metamer constrained colour correction

A three-dimensional linear model actually fits a lot of re
flectances rather well: especially whites and greys and
saturated colours. As colours become more saturated
the model becomes less accurate. Intuitively, this is to
expected, desaturated reflectances are very smooth an
are composed mostly of low frequency components. S
urated colours tend to have much higher frequency co
ponents (e.g. a deep red has almost 0 reflectance in
blue part of the spectrum and this can shoot up to 70
80% in the longer wavelengths). The 3-dimensional line
model is insufficiently rich to model higher frequencie
This failure manifests itself in inaccurate and implausib
reflectance recovery. The recovered reflectance for a
urated colour often has reflectance values that are big
than 100% or less than 0% (they reflect or absorb mo
light than was incident).

In order to model saturated colours and so facilitate a
curate correction higher dimensional models of reflectan
are needed. However, given an n-dimensional model (n >

3) of surface reflectance, the system of equations defin
by the lighting matrix becomes under-determined. Inste
of a single unique solution a whole set of solutions b
comes feasible. The set of solutions of such a system
be expressed as [6]:

�
T = �

T
�
e = �

T

� �
e + �

T

0 �
e (7)

�
T

� �
e = �

T (8)

�
T

0 �
e = 0 (9)

Here�0 is a set of weights characterising reflectances wh
account for zero RGB response, they areblackfor the sen-
sor. The final reflectance is then represented as a sum
a reflectance which gives the required response (��) and a
sequence ofmetameric blackreflectances (�0) all giving
zero response to the camera.

In Equations (7)-(9) we describe reflectances by th
part which projects non-trivially on to RGB and that pa
which is orthogonal or black to the camera. Any n-dimensional
basis set can be split into two parts such that the first 3
sis vectors project non-trivially onto the sensors and t
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Figure 1: An example of 5 dimensional recovery.

secondn � 3 vectors are Metameric blacks. Hencefor
we will assume our reflectance basis is in this form:

[�1 �2 �3 0 � � � 0]T� �
e = �T

[0 0 0 �4; �5 : : : �n]
T
�
e = 0

(10)

3.1. Feasibility Constraints

Not all reflectance functions described in eq.(7) are f
sible. Surface reflectance functions must benon-negative
(no less than no light is reflected by a surface) andless than
or equal to one(no more than all light is reflected by a su
face)3. These conditions restrict the the�i parameters. The
feasible set consists only of reflectances must satisfy th
plausibility constraints.

Figure 1 shows reflectance recovery subject to c
straints. The two horizontal solid lines,y = 1 andy = 0,
denote the area of feasible solutions (non-negative and
than or equal to one), the solid line shows the origin
reflectance, the dotted line shows the 3D lighting mat
solution (which in this case has negatives so is not e
feasible). The dashed line shows the five dimensional
lution obtained from the 3D solution and the metame
black solution. Notice that as well as being feasible t
3D+metameric black solution is also much closer to t
actual reflectance.

That reflectances have between 0 and 100% reflecta
is just one constraint that might usefully be applied. W
can also place constraints on the� weights themselves
It could be for example that�4, the coefficient control-
ling the contribution of the 4th basis function, must l
in the interval[�0:02; 0:02]. In order to understand how
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these intervals are chosen we must understand how th
flectance basis functions themselves are derived. Sup
thatU denotes a31 �m matrix of representative surfac
reflectances; each column ofU contains a single surface
reflectance. We would like to find a31�n basis (n << m)
B such that linear combinations of the columns ofB could
be used to approximateU. The technique of characteristi
vector analysis[4] allows us to find such a basis. Asso
ated withBwe have ann�mweight matrixW such that:

BW � U (11)

whereW is chosen to minimize the approximation err
(actually it is defined by a least-squares regression matr
The minimum and the maximum of all weight sets for ea
of the basis functions, that is the minimum and maximu
of the rows ofW, serve as the lower and upper bounds f
the� weights4.

With all these constraints in hand we next show ho
we can use them in colour correction. First we obse
that each constraint can be written as an inequality e
the reflectance must be less than or equal to 1. Sec
we note that there will probably be many reflectances t
satisfy all the inequalities and so we need to choose
answer from the set. In making this choice it is reaso
able to suppose that we wish to optimize some error cr
rion. Assuming the error criterion is linear then metam
constrained colour constancy can be formulated as a lin
program.

3.2. Linear Programming

Linear Programming is defined by a set of inequalities (h
spaces) and a linear objective function which is to be m
imised (or maximised), formally:

min
�

c
T
� (12)

subject toA� � b (13)

whereA is ak � n matrix of the left side of the inequali-
ties,� is an�1 column vector of the unknown reflectanc
b is ak�1 column vector of the right sides of the inequa
ities andc is an� 1 column vector defining the objective
function. The reader is reminded thatn is the dimension
of surface reflectance.
The constraints for reflectances addressed above ca
interpreted as two inequalities for each wavelength (e
reflectance at each wavelengthmustbe non-negative and
less than or equal to one). Because we are represen
reflectances by their values at 31 sample points this g
4The maxima and minima are picked for each weight dimension se
arately, therefore the resulting bounds are not “real” in the sense that su
a set of weights does not necessarily exist.

we
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62 constraints. Added to this we need constraints on
sigma weights. Assuming reflectance isn-dimensional we
need two constraints for each basis function and so n
2n additional constraints. Thek = 62+2n constraints to-
gether are combined in the constraint matrixA in eq.(13).
Note that the formulation given in (13) allows only “les
than or equal to” inequalities but that we want “bigger th
or equal to inequalities” as well. The latter inequalities a
readily transformed to the former by multiplying the a
propriate row ofA� andb by -1.

We would like to find the set of XYZs that satisfy a
the constraints inA. That is, we would like to find all re-
flectances, characterized by a weight vector�, and project
these down onto the XYZ colour matching functions.
find the set in XYZ space, the objective function (defin
by the vectorc) was chosen to minimise (as well as ma
imise) each of the X, Y, and Z co-ordinates in turn. Spec
ically, c is one column of the lighting matrix for the XYZ
functions (each column of which defines the X, Y, and
responses to each of then basis functions). The result o
this optimization is six extreme XYZ co-ordinates.

3.3. Finding the Centre of Feasible Cube

Let us consider the set of all possible XYZs (correspon
ing to an RGB) to be the cube enclosing the six extre
XYZs. This cube5 is a larger estimate of the solution se
as not all points within the cube necessarily represen
feasible solution.
Selecting a single answer from the cube is straightforwa
we simply choose the cube centre. This selection m
mizes the cost of making an error in either the X, Y or
coordinates. It mitigates against the worst case correc
error. Though, we point out that the center of the cube n
not be feasible. In spite of this, this algorithm (further r
ferred to as the LPCC modelLinear Programming Centre
of the Cube) performs rather well. Moreover, because it
designed to minimize the cost of making a worst case
ror it should result in small maximum errors. Experimen
reported later show that this is the case.

3.4. Centroid of Feasible Set

The advantage of the feasible cube approach is its s
plicity. However, we would like to characterise more a
curately the feasible solution set. Since, in so doing
should have a stronger foundation for carrying out colo
correction.

To to this, We sample the interior points of the cu
and for each point check to see if it is feasible (that th
satisfy the constraints in 13). Proceeding in this way
p-
ch 5The cube is constructed so as to cover the extreme XYZs, and so that
all faces are parallel to the planes defining the co-ordinate system.
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Figure 2: The camera sensitivities used in the experiments.

find a convex cloud of feasible points inside LPCC cub
Relative to this cloud, the point that has smallest maxim
distance from all other points in the cloud is the XYZ ch
sen for correction. This model will be referred to as t
LPFSC model (Linear Programming Feasible Set Centre).

4. Results

To compare the performance of all the algorithms that ha
been described, several simulation experiments were
ried out. Figure 2 shows the spectral sensitivities of t
camera which were used throughout the testing[2]. In
first experiment two standard reflectance sets were u
the Macbeth Color Checker Chart and Munsell colour
las. In a second experiment, and in order to examine m
closely the question of saturated reflectances we sele
a set of 134 reflectances which lie close to the bound
of the object colour solid. These reflectances were dra
from four combined reflectance sets: the Munsells, a
of object reflectances [8], a set of natural reflectances
together with a set of Dupont dye reflectances. In orde
get good correction performance for this saturated set
trained our algorithm on a set of reflectances with as la
a gamut as possible. Thus, we selected 41 reflectan
which, when projected down to the XYZ colour match
ing functions span the complete range of colours. Qu
itatively, the 41 reflectances are similar to Macbeth
flectances but they led to better algorithm performance
all algorithms tested. The illuminants used for the exp
iments were CIE standard illuminants D65 and A and
measured fluorescent illuminant.

Correction results are summarised in Tables 1 throu
3. Table 1 reports correction CIE Lab error for correc
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ing Macbeth colour checker RGBs to XYZs. The LS
correction involves fitting RGBs to XYZs. The 3D correc
tion answer is based on a 3-dimensional characteristic v
tor analysis (CVA) of the Macbeth’s. LPCC and LPSF
both use a 6 dimensional CVA of the colour checker.
is clear that the constrained correction methods LPCC
LPFSC perform significantly better; especially, in terms
the maximum error. However, the incorporation of co
straints has also reduced the mean error by about 1 d
E. For completeness we show the delta Es for each of
24 patches on the colour checker. It is apparent that
constrained approach can deliver higher error than LS
But, this is as we might expect since the colour correct
problem is ill posed. For individual reflectances the LS
answer may be better than the unconstrained answer.

Table 2 reports results for training on the Macbeth colour
checker and testing on the Munsells. Overall the perf
mance trends are as before. The constrained regres
delivers a significantly reduced maximum error rate a
reduces the mean by about 1 delta E.

Perhaps the most interesting experimental results
reported in Table 3. Here we train on the 41 maximu
gamut reflectance set and test on the 134 saturated reflectances
(reflectances that are close to the boundary of the ob
colour solid). We know that the problem area for colo
correction is the saturated colours and so we might exp
the constrained correction method to work best here. T
is the case. The maximum error is reduced by a facto
4 compared to the 3D and LSQ correction methods. T
mean error is reduced by a factor of 2.

The reader will see that the LPFSC method retu
slightly higher error rates than LPCC. This was unexpec
The LPCC method models the feasible solutions to
colour correction as a cube of XYZs. However, only som
interior points of the cube are actually possible so o
might imagine that the LPCC method is suboptimal in so
sense. In contrast the LPSFC method works only with
feasible interior points and so should provide a better
sis for colour correction. However, the difficulty here
finding the interior points. Our algorithm works by pa
titioning the interior of the cube and checking feasibili
on a point by point basis. If the actual feasible set is v
flat (i.e. not very 3-dimensional) then it is possible that w
fail to adequately characterise the feasible set and this
lead to poorer correction performance. We are curren
developing methods to deal with this problem.

5. Conclusions

A set of colour correction algorithms was presented, t
of which are considered to be standard (LSQ and 3D)
two of which are newmetamer constrained colour cor
rection algorithms (LPCC and LPFSC). We believe th
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model LSQ 3D LPCC LPFSC
01 1.6629 1.5371 0.8242 1.1306
02 5.8518 5.7990 5.3350 5.3350
03 4.1728 4.0279 5.7413 5.7413
04 4.5731 4.8079 1.5372 2.2052
05 0.6844 0.5349 1.3913 1.3913
06 8.6639 9.0111 3.3010 2.8917
07 4.4621 4.7646 5.5743 5.6261
08 6.9284 6.8586 6.2854 6.0979
09 3.6974 3.5421 2.9690 2.0814
10 4.6480 4.5023 3.1649 3.6381
11 3.2845 3.6841 3.7096 4.1462
12 8.4166 8.7749 7.4726 6.8340
13 12.1185 12.0785 3.2444 3.3862
14 7.3733 7.9298 6.7304 6.9141
15 11.9203 11.6026 4.4801 4.7297
16 0.8639 1.3331 1.4672 3.3274
17 1.7569 1.3288 1.8074 2.2077
18 12.7408 13.0432 4.7075 4.0180
19 2.0171 1.8989 1.9951 2.0862
20 2.2340 2.1320 2.9743 2.9743
21 2.1263 2.0405 3.2006 3.2006
22 1.4463 1.3753 3.1613 3.1613
23 1.2370 1.1878 3.9807 3.8521
24 0.6889 0.6584 2.8924 2.0325
max 12.7408 13.0432 7.4726 6.9141
min 0.6844 0.5349 0.8242 1.1306
mean 4.7321 4.7689 3.6645 3.7087

Table 1: Statistics (�E values) for the following set-up: illu-
minant: D65, training set: Macbeth ColorCheckerChart (24
flectances), testing set: Macbeth ColourChecker Chart (24
flectances), dimension: 6 (covering 99.8 % variation)

model LSQ 3D LPCC LPFSC
max 20.4060 32.3414 16.3173 15.5799
min 0.1977 0.0688 0.4390 0.1961
mean 5.8408 6.0043 4.9052 4.8511

Table 2: The statistics (�E values) for the following set-up: illu-
minant: D65, training set: uniformly distributed 41 reflectanc
testing set: 462 Munsell chips, dimension: 6 (covering 99.3
variation)

model LSQ 3D LPCC LPFSC
max 37.4189 43.5308 11.7975 12.95
min 0.7934 0.7346 0.4448 0.49
mean 8.4883 10.6349 4.4246 4.63

Table 3: The statistics (�E values) for the following set-up: il-
luminant: fluorescent, training set: 41 uniformly distributed
flectances, testing set: 134 saturated reflectances, dimensi
(covering 99.3 % variation)
631
-
-

,

latter improve on the former because they are based
a better conceptual understanding of the problem its
Specifically, the linear correction methods, LSQ and 3
assume that colour correction is a 1 to 1 problem. It
not. Rather there is an intrinsic uncertainty in the corre
tion. Many metamers project down onto the same RG
Yet this metamer set projects non-uniquely on to XY
The constrained metamer approach, of which the LP
and LPFSC algorithms are examples, characterise the
sible set of XYZs and provide a means for selecting a s
gle answer from within the set.

Importantly our new well founded algorithms for colo
correction deliver improved correction performance. In
cases error rates are reduced. For the particular cas
saturated colours (the colours that are most difficult to c
rect) the mean and maximum error rate are reduced res
tively by a factor of 2 and 4 respectively.
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