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Abstract

An analysis is presented of how the space in which principal
component analysis is performed can affect the colorimetric
and spectral accuracy of spectral reconstruction. The spectral
reconstruction is performed using digital counts given by a
new concept of spectral image acquisition constituted by a
trichromatic camera combined with absorption filters,
instead of the traditional monochrome camera and a set of
interference filters. The comparison of the spectral
reconstruction performance in each space shows the
advantages and disadvantages of using alternative spaces
rather than reflectance.

Introduction

During the last Color Imaging Conference we introduced an
image capturing system that results in spectral image
archives with sufficient spatial resolution and colorimetric
accuracy for artwork imaging.1,2 In this system, a multi-
band, low-spatial resolution multi-spectral image is
combined with a high-spatial resolution lightness image
(from either a monochrome digital camera or digitized
photograph) to generate a high-spatial resolution spectral
image. This will greatly reduce the cost and complexity of
the image acquisition system. At the same time, this system
enables defining images spectrally and the use of spectral
information in order to provide printed color reproductions
that are close spectral matches to the original objects. Thus,
it produces high-quality color matching under different
illuminations and observers. This method applies a priori
spectral analysis, linear modeling techniques, and exploiting
of the human visual system's spatial properties to achieve
high-resolution multi-spectral images. Preliminary
experiments of this method showed promising results.

Technical issues concerned with multi-spectral image
acquisition have been studied intensively.1-23 We also have
been studying an alternative way to capture multi-spectral
images using a conventional trichromatic digital camera
combined with absorption filters1,3 in order to overcome the
inherent limitations of a traditional monochrome camera
combined with interference filters.8,9 Our goal in this
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research has focused on reducing the cost and complexity of
the image acquisition system while preserving its
colorimetric and spectral accuracy.

Traditionally, the spectral reconstruction from digital
camera signals has been performed in reflectance space,
because digital camera signals are directly related to spectral
reflectance. When dealing with other spaces rather than
reflectance, e.g. absorption, absorption vectors and digital
count vectors are not in the same space and a non-linear
transformation should be performed a priori to produce
digital counts directly related to the space. This digital count
transformation enables the use of principal component
analysis and other linear tools.

This contribution will focus on the analyses of the
spectral reconstruction performed in various spaces, besides
reflectance, using transformed normalized signals from a
trichromatic camera combined with absorption filters. In this
research, we will compare the performance of spectral
reconstruction by principal component analysis in
reflectance space, Kubelka-Munk (K/S) space for opaque
materials, and a new empirical space proposed by Tzeng and
Berns21 that gives a near-normal and reduced dimensionality
space for subtractive opaque processes. Using different
targets and combinations of trichromatic signal sets, we will
analyze the influence of the database used for principal
component analysis, and the filtering on the accuracy of the
results given by the spectral reconstruction in each
considered space.

Technical Approach

The spectral reflectance of each pixel of a painting can be
estimated using a priori spectral analysis with direct mea-
surement and imaging of color patches to establish a rela-
tionship between the digital counts and spectral reflectance.

A set of spectral reflectances, r, is measured and then
the corresponding set of eigenvectors, e, is calculated by
principal component analysis. Then, the set of eigenvalues,
α, corresponding to the eigenvectors, e, are calculated using
the spectral reflectances, r. A relationship between digital
counts, C , and eigenvalues, α , can be established by the
equation
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where T denotes transpose matrix.
The matrix A  can be used to calculate the eigenvalues,

α, from digital counts to reconstruct the spectral reflectance.

Spaces to Perform Principal Component
Analysis
I) Reflectance Space

Reflectance space is directly related to the digital counts
of the digital camera and it is traditionally used to perform
spectral analysis.

II) Kubelka-Munk Space
Reflection, absorption and scattering occur when opaque

surfaces are exposed to light. Kubelka and Munk proposed a
turbid media theory that derives the relationship between
reflectance factor, absorption and scattering.23 According to
Kubelka-Munk formulation, reflectance factor is a function
of the absorption and scattering ratio (K/S). The Kubelka-
Munk equations relating reflectance factor, R , and the ratio,
(K/S), of absorption and scattering for opaque materials are
given by equations (2) and (3).
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In Kubelka-Munk space the ratio (K/S) of absorption
and scattering is approximately linear with respect to
colorant concentration.24

III) New Empirical Space
Tzeng and Berns proposed a new empirical space that

gives a near-normal and reduced dimensionality for
subtractive opaque processes.21 The transformations from
reflectance factor, R , to the new space, Ψ , are given by
equations (4) and (5), where a is an offset vector which is
empirically derived.

Ψ = −a R     (4)

  R a= −( )Ψ 2      (5)

Experiments

In our experiments, we considered one imaging system,
three targets, images captured using combinations of three
sets of trichromatic signals, and principal component
analysis performed in three different spaces. For imaging
systems, we used a high-resolution IBM PRO\3000 digital
camera system (3,072 x 4,096 pixels, 12 bits per channel).
The spectral sensitivities of the camera were measured, as
well as the spectral radiant power of the illuminant used in
the imaging. A GretagMacbeth ColorChecker and two sets
of painted patches were imaged (one of them made by acrylic
paints and the other by post-color paints). The different
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combinations of trichromatic signals were obtained from the
trichromatic data without filtering, the trichromatic data with
a light-blue filter (Kodak Wratten filter number 38), and a
very-light-green filter (Kodak Wratten filter number 66).

I. Performance of Principal Component Analysis
in Different Spaces

In this simulation, a statistical analysis was performed
without introducing noise in the digitizing system. The
spectral reflectances of the GretagMacbeth ColorChecker and
two sets of painted patches were measured. Kubelka-Munk,
(K/S), and the new empirical space, ψ, were calculated from
the measured reflectances. Principal component analysis was
performed in each space. As an example, Table I shows the
influence of the number of eigenvectors on the colorimetric
accuracy using CIE94 (D50 and 2° observer) and on the
spectral accuracy of the estimation for the set of 147 painted
patches produced using mixtures of GALERIA acrylic
colorant produced by Winsor & Newton (Cadmium Red
Hue, Permanent Green Deep, Ultramarine, Cerulean Blue
Hue, Permanent Magenta, Cadmium Yellow Medium Hue,
Mars Black and White).

Analyzing the overall simulation results of all three
targets, the spectral reconstruction in the new empirical
space presented slightly better spectral and colorimetric
accuracy than the reconstruction in the reflectance space.
Table I shows that, if we use a trichromatic digitizing
system to capture images, at least 6 eigenvectors,
corresponding to 2 sets of trichromatic signals, are needed to
produce accuracy of ∆E*94 less than a unity and spectral
reflectance rms error of less than 2.5%.

II. Estimation of Spectral Reflectance Us ing
Simulated Digital Counts

One can simulate the digital counts using a camera
model given by C=(DF)TSr, where D is the camera spectral
sensitivities, F is the spectral transmittance of the filters, S
is the illumination spectral power distribution, r is the
object spectral reflectance, and C  is the simulated digital
counts. The estimation of the spectral reflectance using
simulated digital counts gives a performance of the
estimation of reflectance for each target, for each
trichromatic signal combination, in each space, without
introducing noise from the real, measured digital counts. The
digital counts do not have direct proportionality with
Kubelka-Munk and the new empirical spaces.

In order to solve this problem, transformations for the
digital counts were derived, in the same way defined in
equations (2) and (4), by equations (6) and (7), for Kubelka-
Munk and the new empirical spaces, respectively.

′′ == ++ −−C
C

C1

2 2
1 (6)

′′ == −−C C1 ,     (7)

where ′′C  is the transformed digital count and C  is the
normalized digital count.
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Table I. Influence of the number of eigenvectors in each
space used in the spectral reconstruction on the colorimetric
and spectral error for a set of painted patches produced
using acrylic paints.

Reflectance space Kubelka-Munk spaceNumber of
Eigenvectors Mean

∆E*94

Reflectance
factor rms

error

Mean
∆E*94

Reflectance
factor rms

error
1 26.6 0.140 23.3 0.171
2 15.6 0.068 15.5 0.078
3 4.1 0.027 1.9 0.050
4 1.3 0.016 1.6 0.030
5 0.7 0.012 1.2 0.033
6 0.4 0.009 0.9 0.022
7 0.3 0.007 0.4 0.019
8 0.2 0.005 0.3 0.022
9 0.1 0.004 0.2 0.016

10 0.05 0.002 0.2 0.017
11 0.02 0.001 0.2 0.017
12 0.01 0.001 0.2 0.014

New empirical spaceNumber of
Eigenvectors Mean

∆E*94

Reflectance
factor rms

error
1 32.7 0.192
2 13.6 0.068
3 3.3 0.025
4 1.0 0.013
5 0.5 0.009
6 0.3 0.007
7 0.2 0.006
8 0.1 0.004
9 0.03 0.003

10 0.02 0.002
11 0.01 0.001
12 0.00 0.001

As a result of the simulations, it was possible to observe
that the non-linear transformations given by equations (6)
and (7) improved the accuracy of the spectral
reconstructions. The simulations in Kubelka-Munk space
produced spectral mismatches and large colorimetric errors
for patches with high reflectance factors. High reflectance
factors produce very small (K/S) values. When spectral
reconstruction is performed using principal component
analysis in reduced dimensionality, there is an error in the
reconstruction that can produce negative (K/S) values.
When these negative values are introduced in equation (3)
we have negative values in a square root. For example,
Figure 1a shows the comparison of the measured and
estimated spectral reflectance of the Orange-Yellow patch
of the GretagMacbeth ColorChecker reproduced using 6
eigenvectors and 6 signals in Kubelka-Munk space. It shows
a considerable mismatch in the high reflectance factor
23
region of the spectrum. However, the estimation in
Kubelka-Munk space produced very good results for some
patches with low reflectance factors, that was not
reproduced well in reflectance space, such as the Purple
patch of the GretagMacbeth ColorChecker. Figure 1b shows
the comparison of the measured and estimated spectral
reflectance of the Purple patch reproduced using 6
eigenvectors and 6 signals in reflectance space. Figure 1c
shows the comparison of the measured and estimated
spectral reflectance of the purple patch reproduced using 6
eigenvectors and 6 signals in Kubelka-Munk space.
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a) ColorChecker Orange-Yellow match in Kubelka-Munk space.
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b) ColorChecker Purple match in reflectance space.
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c) ColorChecker Purple match in Kubelka-Munk space.

Figure 1. Comparisons of measured and predicted spectral
reflectances using 6 eigenvectors and 6 signals: trichromatic
signal without filter and trichromatic signal with Wratten
absorption filter number 38 (light blue).
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In all of the estimations above, the 6 camera signals
were derived using trichromatic signals without filter and
trichromatic signals with Kodak Wratten absorption filter
number 38 (light blue) and the spectral sensitivities of IBM
PRO\3000 digital camera system.

Analyzing the performance in the reflectance, K/S and
new empirical spaces it was possible to see the dependency
on the database used to perform principal component
analysis. Both reflectance and the empirical spaces produced,
in general, acceptable results. In this paper, we will present
the results of the spectral estimation from digital counts for
the IBM Digital Camera System with 6 eigenvectors and 6
signals (given by R, G, B without filtering and R, G, B
with Kodak Wratten absorption filter number 38) in the new
empirical space, because this combination produced the best
overall colorimetric and spectral accuracy. The result for
simulated digital counts of the GretagMacbeth ColorChecker
in the empirical space is summarized in Table II. ∆E*94 and
∆E*ab calculations were performed for illuminant D50 and
2° observer. The metameric index was calculated using the
Fairman metameric black method, between standard
illuminants D50 and A using ∆E*94 in the calculations.25

Table II. Spectral reconstruction of GretagMacbeth
ColorChecker using 6 eigenvectors in new empirical space
for 6 signals: R, G, B without filter and R, G, B with
Wratten absorption filter number 38 (light blue).

Results
∆E*ab

(D50, 2°)
∆E*94

(D50, 2°)
Reflectance
factor rms

error

Metameric
index

(∆E*94)
(D50, A)

Mean 1 . 7 0 . 9 0 . 0 2 0 0 . 4
Standard
Deviation

0.9 0.4 0.009 0.3

Max 4.0 2.4 0.043 1.0
Min 0.5 0.5 0.006 0.05

III. Estimation of the spectral reflectance using
measured digital counts

This estimation applies basically the same idea of the
linear method using simulated digital counts, but instead of
simulated digital counts using a camera model, spectral
reflectance is estimated from measured digital counts
averaged over each imaged patch. Tables III, IV and V shows
the colorimetric and spectral accuracy for spectral
reconstruction in the empirical space using trichromatic
signals for the same conditions of Table II for IBM
Pro\3000 digital camera system, for the GretagMacbeth
ColorChecker, the acrylic painted patches and the post-color
painted patches, respectively.

Comparing the results of the spectral reconstruction for
the GretagMacbeth ColorChecker summarized in Tables II
and III, the averaged colorimetric differences were worse in
the reconstruction using measured digital counts than the
reconstruction using simulated digital counts by a factor of
about 2. The reflectance rms error factor was about 50%
424
worse in the reconstruction using measured digital counts
than the reconstruction using simulated digital counts. This
result was expected because of the introduction of noise and
typical experimental error. However, our results obtained for
the spectral reconstruction of the GretagMacbeth
ColorChecker with color difference ∆E*ab of 2.9 is better
than the average ∆E*ab of 4.0, obtained using a
monochrome digital camera and a set of 7 interference filters
by Burns.16 Our results are also similar to the ∆E*ab

between 2 and 3 (depending on the lighting used to image)
obtained by the MARC camera in the VASARI project
(though this system was optimal for colorimetric
performance and does not estimate spectral data).26

Table III. Spectral reconstruction of GretagMacbeth
ColorChecker using 6 eigenvectors in new empirical space
for 6 signals: R, G, B without filter and R, G, B with
Wratten absorption filter number 38 (light blue).

Results
∆E*ab

(D50, 2°)
∆E*94

(D50, 2°)
Reflectance
factor rms

error

Metameric
index

(∆E*94)
 (D50, A)

Mean 2 . 9 1 . 9 0 . 0 2 9 0 . 8
Standard
Deviation

1.8 0.9 0.013 0.5

Max 7.5 3.5 0.066 2.0
Min 0.5 0.6 0.005 0.1

Table IV. Spectral reconstruction of acrylic painted patches
using 6 eigenvectors in new empirical space for 6 signals:
R, G, B without filter and R, G, B with Wratten absorption
filter number 38 (light blue).

Results
∆E*ab

(D50, 2°)
∆E*94

(D50, 2°)
Reflectance
factor rms

error

Metameric
index

(∆E*94)
 (D50, A)

Mean 4 . 2 3 . 1 0 . 0 2 7 1 . 3
Standard
Deviation

2.8 2.3 0.015 1.1

Max 24.1 17.5 0.076 6.4
Min 0.2 0.1 0.003 0.04

Table V. Spectral reconstruction of post-color painted
patches using 6 eigenvectors in new empirical space for 6
signals: R, G, B without filter and R, G, B with Wratten
absorption filter number 38 (light-blue).

Results
∆E*ab

(D50, 2°)
∆E*94

(D50, 2°)
Reflect

factor rms
error

Metameric
index

(∆E*94)
 (D50, A)

Mean 3 . 3 1 . 9 0 . 0 2 5 1 . 0
Standard
Deviation

2.1 1.5 0.010 0.7

Max 11.8 8.9 0.055 4.8
Min 0.4 0.3 0.008 0.03
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Conclusion

The experimental sequence of the spectral reconstruction
from trichromatic digital camera combined with absorption
filters was described, showing, at first, the colorimetric and
spectral accuracy predicted by statistical analysis of samples,
and progressively adding noise, first calculating the
simulated digitizing camera system, and finally, presenting
the performance of the reconstruction using measured digital
counts from imaged patches. As a result, the spectral
reconstruction in the new empirical space using a
combination of trichromatic signals without filtering and
with light blue absorption filter produced the best overall
colorimetric and spectral performance for the three targets we
analyzed. Spectral reconstruction using higher order
estimation could produce better results. However, six
eigenvectors in the empirical space presents a compromise
between accuracy and fulfillment of our goals of simplicity
and cost reduction. Furthermore, the average colorimetric
result of our reconstruction for the GretagMacbeth
ColorChecker were better or similar to other spectral
reconstruction systems using traditional techniques with the
advantage of simplifying the imaging system.

Although spectral estimation in Kubelka-Munk (K/S)
space produced suitable spectral matches for colorants with
low reflectance factors, it can produce unacceptable errors
when reducing the dimensionality in principal component
analysis. Therefore, this space is not recommended for the
spectral estimation of artwork images unless iterative
methods are incorporated (e.g. references 27 and 28).
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