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Abstract
In this paper, we investigate a multi-exposure mul

illuminant colorimetry system using a Kodak DCS460
digital camera. Our system consists of a measurement
vice and calibration matrices. The measurement devic
formed by a digital camera and a set of filters, and the te
multi-exposure refers to the multiple snapshots taken
this camera using different filters. The calibration mat
ces then take these filtered camera RGB outputs, and re
the CIE XYZ tristimulus values under several pre-select
illumination conditions. Our objective is to find the opti
mal filters and the corresponding calibration matrices th
minimize a cost function accounting for errors inL∗a∗b∗

space, system robustness, and filter smoothness.
We applied this methodology and implemented a tw

exposure camera system using Wratten filters. The exp
imental results are presented in this paper.

1. Introduction

Accurate assessment of color is essential in many appl
tions. A colorimetry system is designed to serve this pu
pose by providing tristimulus values for a given color stim
ulus. Colorimetry systems often consist of a measurem
device, and a corresponding calibration mapping. Bas
on the intrinsic differences in the mechanism of the me
surement device, there are three types of colorimetry s
tems, the spectroradiometer, the spectrophotometer,
the tristimulus-filter colorimeter.1 Both the spectroradiome
ter and spectrophotometer provide spectral measurem
of the sample over the range of visible wavelength
Then the tristimulus values can be obtained by usi
the color matching functions of the CIE standard co
orimetric observer.1 The tristimulus-filter colorimeter on
the other hand provides only the tristimulus values of
sample; and its calibration mapping is nontrivial when t
measurement device is not colorimetric.

However, there are several advantages of the tristimu
filter type colorimeter over radiometric type systems wh
rch supported by a grant from Purdue Research Founda
ool of Dentistry at Indiana University
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it is properly designed. First of all, radiometric system
typically yield only spot measurements. A tristimulus
filter type colorimeter can have high spatial resolution, e
pecially if a mega-pixel digital camera is used as the me
surement device. Secondly, colorimeters are easier to
up and operate. Finally, the measurement device in
tristimulus-filter colorimeter is flexible and can be readi
implemented using popular low cost imaging devices su
as scanners2 or digital cameras.3

In this paper, we propose the multi-exposure cam
system shown in Fig. 1 for imaging colorimetry. Since th
calibration matrixM ′ is an illuminant-dependent module
whose illumination conditionL′ need not be the same a
the illuminantL under which the measurements are mad
it is straightforward to extend this system to multiple illu
minants.

Filter

Camera

Camera

Filter 1

… … …
     under 
illuminant 

Reflectance

illuminant

Measurement device

r : 31-pt. reflectance
L : 31× 31 diagonal illuminant matrix
f i : 31-pt. filter transmittance ofith filter
D : 31× 3 camera sensitivity matrix
Nf : number of exposures in measurement device
M ′: 3Nf × 3 calibration matrix under illuminantL′

A : 31× 3 CIE XYZ color matching functions

Figure 1: Multi-exposure single-illuminant colorimetry system

Similar to most colorimetric devices, our system co
tains both the measurement device and the calibration m
ping. The measurement device is a multi-exposure cam
system composed of filters and a digital camera. The filt
are used to increase the number of measurement chan
thereby improving the precision of the color calibration3

We then design a set of illuminant-dependent calibrati
matrices to estimate the CIE XYZ tristimulus values u
der several different illuminants. Instead of reconstructi
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the reflectance of a color sample,3,4 our goal is to obtain
the tristimulus values of a color sample under several p
selected illumination conditions. In essence when the
of pre-selected illuminants is large enough, this metho
equivalent to methods that reconstruct the reflectance
sample. However, unlike reflectance reconstruction me
ods which weight equally all possible lighting condition
the strategy of this method is to focus on reducing the c
orimetric errors more under those lighting conditions th
are frequently encountered and less under those tha
not. As a result, a more efficient calibration system can
developed.

Much work has been done on designing the calibrat
mapping for given devices. One common technique us
matrix transformation to map device outputs into a desi
space. Our previous work5 applied a regression method
a set of camera measurements to find the optimal cali
tion matrix which minimized the errors in CIE XYZ spac
Farrell et al2 employed the same method to turn scann
into colorimeters. Alternatively, one can employ a mod
of the device to design a suitable calibration matrix. F
layson and Drew6 utilized the spectral sensitivities of th
measurement device and an assumption regarding sa
reflectances to find the calibration matrix.

For the measurement device, Chen and Trussell7 used
filters to alter the device sensitivities and designed an o
mal filter set that maximizes Vora’s measure of goodne
Tominaga3 and Haneishi et al4 used filters along with a
monochrome CCD camera to increase the number of
vice channels. Wolski et al8 designed a colorimeter b
a combination of LEDs, filters, and a common detec
In Ref. 3, the filters are selected from a set of narro
band Wratten filters. In both Refs. 4 and 7, the filte
are restricted to a Gaussian shape. The design prob
are all formulated in such a way that the optimal filter s
maximizes the system performance under a given me
However, only Ref. 8 takes system robustness into acco
and imposes a smoothness constraint on the filter trans
tances, rather than restricting them to a certain functio
form.

We attack this problem simultaneously from the p
spective of both the filter design in the measurement de
and the mapping in the color calibration. Following Wols
et al,8 we formulate the task as a constrained optimizat
problem. The main differences between our work and t
in Ref. 8 are the role of illuminants and the implemen
tion. In Ref. 8, the device operates in two modes: emiss
or reflective. The samples are either self-luminous or i
minated by the LEDs of the device. The training set i
collection of spectral data. In our work, in order to provi
the flexibility of selecting both the input and output illum
nation conditions in our colorimetry system, it is crucial
factor out illuminants in the derivation. Our training set
216
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restricted to a collection of reflectances.
Wolski et al also did not report any actual measuremen

results. Their methodology is verified through simulation
only. In this paper, we verify our method with experiments.
We measure the camera sensitivities and use them to de
sign an appropriate set of filters. To ensure that the de
signed filters are realizable, we search among a candida
set of Kodak Wratten filters that are currently available on
the market to design a 2-exposure 5-illuminant system. We
present experimental results in Sec. 3.

2. Multi-exposure colorimetry system

In this section, we describe the design of a multi-exposure
colorimetry system using a digital camera. For simplicity,
let us start with the multi-exposure single-illuminant sys-
tem shown in Fig. 1.

2.1. Multi-exposure single-illuminant system

LetNf be the number of filters in the measurement device;
and letF be an augmented matrix

F =
[

[f1]D [f2]D · · · [fNf ]D
]
31×3Nf

, (1)

which characterizes the camera-filter combination of the
system. Letrk be the reflectance ofkth color training
sample,k = 1, . . . , Nr, andR be the stack of those re-
flectances,

R = [rt1 r
t
2 · · · r

t
Nr ]

t. (2)

Now, letS be the stack of device outputs which are the
filtered camera RGB’s of the aboveNr training samples
taken under illuminantL; and letT ′ be the stack of their
true CIE XYZ tristimulus values under illuminantL′. That
is,

S =


R

(1)
1 G

(1)
1 B

(1)
1 · · · R

(Nf )
1 G

(Nf )
1 B

(Nf )
1

R
(1)
2 G

(1)
2 B

(1)
2 · · · R

(Nf )
2 G

(Nf )
2 B

(Nf )
2

...
...

...
...

...
...

R
(1)
Nr

G
(1)
Nr

B
(1)
Nr

· · · R
(Nf )
Nr

G
(Nf )
Nr

B
(Nf )
Nr

 .

T ′ =


X ′1 Y ′1 Z ′1
X ′2 Y ′2 Z ′2
...

...
...

X ′Nr Y ′Nr Z ′Nr

 . (3)

Therefore, the stacksS andT ′ can be written as

S = RLF ,andT ′ = RL′A, (4)

respectively.
Consider thekth color sample for the moment. Its true

tristimulus values underL′ are
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† http://www4.ncsu.edu/eos/users/h/hjt/colordata/objspectra/
http://198.53.144.31/∼poynton/notes/color/Haanpalo.html
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t′k = rkL
′A; (5)

and its estimate from the calibration matrixM ′ is

t̂′k = rkLFM
′. (6)

Hence, the estimation error in CIE XYZ space is

∆t′k = t′k − t̂
′
k = rk(L′A−LFM ′). (7)

Applying the same local linearization technique as in R
8, the estimation error∆u′k in CIE L∗a∗b∗ space can be
approximated by weighting∆t′k with a local Jacobian ma-
trix J ′k. That is,

∆u′
t

k ≈ J
′
k∆t′

t

k = J ′k(AtL′ −M ′t(LF )t)rtk. (8)

For convenience, we refer to∆E′k = ‖∆u′
t

k ‖2 as the
perceptual error, recognizing that the CIEL∗a∗b∗ space
only accounts for a very limited part of how humans pe
ceive color.

Now let us sum the errors for all the color samples
the training set. The square of the total root-mean-squa
error can be approximated by

(∆E′rms)
2 ≈ ‖B′eqvec(AtL′ −M ′t(LF )t)‖22. (9)

where,

B′
t

eqB
′
eq =

1

Nr

Nr∑
k=1

B′
t

kBk, withB′k = (rtk ⊗ J
′
k)

summarizes the contribution of the training set.
To investigate the robustness of the device, replacingF

in Eq. (9) byF + ∆F , then using linearity of vec(·) and
two 2-norm inequalities,8 it can be shown that(∆E′rms)

2 is
upper bounded by2ε′t,

(∆E′rms)
2 ≤ 2ε′t. (10)

where,

ε′t =

∥∥∥∥[ B′eqvec(AtL′)
0

]
−[

B′eq(LF ⊗ I3)√
KtI9n

]
vec(M ′t)

∥∥∥∥2

2

, (11)

Kt = ‖B′eq(L∆F ⊗ I3)‖22. (12)

For filter smoothness, we define a penalty functionεs
such that

εs = Ks

∑
i

‖D2f i‖
2
2, (13)

using a second order difference operatorD2 described in
Ref. 8. Consequently, a cost functionh(F ) involving per-
ceptual errors in CIEL∗a∗b∗ space, system robustnes
317
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and filter smoothness is obtained; and the calibration pr
lem can thus be formulated as the following constrain
optimization problem:

Minimize

h(F ) = ε′t + εs, (14)

Subject to

0 ≤ all elements off i ≤ 1 i = 1, 2, . . . , Nf .

Note that due to the local linearization in Eq. (8), Eq. (1
has a closed-form solution forM ′ givenF . It can be com-
puted by

vec(M ′t) = [(LF ⊗ I3)tB′
t

eqB
′
eq(LF ⊗ I3)]−1 ·

(LF ⊗ I3)tB′
t

eqB
′
eqvec(AtL′). (15)

This simplifies the optimization problem and accelera
the search for the solution at the expense of small perc
tual errors.

Finally, the constrained optimization problem in E
(14) is solved numerically and iteratively using the routi
constr.mfrom MATLAB. Note thatKt, Ks, and an initial
filter set have to be pre-specified.

2.2. Multi-exposure multi-illuminant system

The extension of the system in Sec. 2.1 to the mu
illuminant case is straightforwardly done by using the fo
lowing substitutions in the derivation. First replace the o
put illuminantL′, calibration matrixM ′, and cost termε′t
by illuminantsLi, calibration matricesM i, and cost terms
ε

(i)
t for i = 1, 2, . . . ,m, respectively. Then the overall cos

functionh(F ) is set to

h(F ) = max
i
{ε(i)
t }+ εs, (16)

which is equivalent to taking the worst case scenario am
illuminants as the overall cost. The optimization can
solved iteratively in a fashion similar to that used in Sec.

3. Simulations and experimental results

To implement this colorimetry system, we measured
sensitivity of our DCS460c camera using a tunable mo
chromatic light source and a spectroradiometer,9 and uti-
lized a reference data set R1 to design an appropriate fi
set for the measurement device. This reference data
consists of DuPont paint chips, Munsell color chips, a
natural objects, and is collected from the literature.† As
shown in Fig. 2, by performing principal component an
ysis on this data collection under various illuminants, w
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Figure 2: Principal Component Analysis of the reference data s
R1.

found that 4∼6 basis terms are adequate to achieve a me
∆E of less than 2∆Eab units in approximating the spec
tral power distributions of those samples. Therefore, w
chose to realize a two-exposure colorimetry system wh
corresponds to a six channel device. This system ta
pictures of a color sample illuminated by the camera fla
and returns the CIE XYZ tristimulus values of that sam
ple under five pre-specified illuminants: flashlight, equa
energy illuminant E, illuminant A, fluorescent light F, an
illuminant D65. The pictures are taken under flashlight b
cause this is the most common light source in photog
phy. The pre-specified illuminants are chosen from a se
commonly encountered light sources to illustrate the p
formance of the system.

Prior to the system design, a suitable weighting pa
(Kt,Ks) has to be specified. In order to do so, we inves
gated a simplified two-exposure system where the sam
is illuminated by a flashlight and the calibration syste
returns the CIE XYZ tristimulus values under flashligh
only. We designed nine filter-calibration matrix pairs fo
various(Kt,Ks) values, investigated the system perfo
mance versus weighting parameter values, and found
(Kt,Ks) = (10−4, 1) is appropriate for this application.
The filter transmittances(f1,f2) of this optimal filter pair
are shown in Fig.3a; and the simulation results are list
in Table 1a. We also tested the robustness of the ov
all system by adding uniformly distributed random nois
∼ U [−0.005, 0.005] to the simulated camera outputs. Th
strength of this noise corresponds to a±0.5% device mea-
surement error. The simulation results for the noisy syst
are also listed in Table 1a.

For the design of the 2-exposure 5-illuminant syste
we followed the procedure described in Sec. 2.2, set(Kt,Ks)

= (10−4, 1), and found a pair of optimal filters(f (o)
1 ,f

(o)
2 )

whose transmittances are shown in Fig. 3b. The simulat
results for this system are listed in Table 1b.

In practice, it is not clear if the designed filters are rea
izable even with the smoothness penaltyεs in our problem
formulation. To overcome this, we use a suboptimal a
proach referred to as restricted search. Instead of solvin
constrained optimization, we search for the best filter p
418
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among a candidate set of filters that are currently availab
on the market. One of the two search strategies, exhausti
search and iterated condition modes (ICM),10 is employed
depending on the computational complexity of the prob
lem.
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Figure 3: Optimal filter pairs (a)(f1,f2), (b) (f
(o)
1 ,f

(o)
2 ), and

(c) (f
(w)
1 ,f

(w)
2 ) when(Kt,Ks) = (10−4, 1). Here, (a) was de-

signed for a 2-exposure Flash-Flash colorimetry system; (b) wa
designed for a 2-exposure Flash-{Flash, E, A, F, D65} colorime-
try system using the optimal procedure described in the text; an
(c) was designed for a Flash-{Flash, E, A, F, D65} colorimetry
system using the optimal procedure with the restriction that the
filters are combination from the Wratten set. The filters in (c)
were realized by (WR11+WR85N6,WR38A+WR80B).

We applied this methodology to a 2-exposure 5-illumin
system using the reference data set R1 as training sample
and searched among nearly 4000 filter candidates forme
by either a single Wratten filter‡ or a pair of Wratten filters
concatenated as one. The two filters that resulted from th
restricted search can be realized by four Wratten filters
One is formed by concatenating WR11 and WR85N6; an
the other is formed by concatenating WR38A and WR80B
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The filter transmittances(f (w)
1 ,f

(w)
2 ) of this suboptimal

solution are shown in Fig. 3c; and the simulation results
this system are shown in Table 1c. From Table 1b and
it is observed that with a large set of filter candidates,
performance of the system is degraded only slightly wh
applying restricted search rather than optimal design. W
respect to implementation, this is an encouraging obse
tion.

Flash E A F D65 max.

∆E1 0.21 0.51 0.27 0.45 0.41 0.51

∆E2 2.64 3.44 2.06 3.07 3.30 3.44

∆E3 2.78 3.61 2.16 3.17 3.50 3.61
(a)

Flash E A F D65 max.

∆E1 0.11 0.38 0.24 0.35 0.28 0.38

∆E2 2.56 2.98 2.29 2.61 2.92 2.98

∆E3 2.67 3.09 2.39 2.72 3.05 3.09
(b)

Flash E A F D65 max.

∆E1 0.41 0.70 0.39 0.73 0.61 0.70

∆E2 2.57 3.18 3.11 3.37 2.70 3.37

∆E3 2.67 3.31 3.27 3.49 2.79 3.49
(c)

Table 1: Simulated performance of a 2-exposure colorimetry s
tem using filters (a)(f1,f2), (b)(f

(o)
1 ,f

(o)
2 ), and (c)(f (w)

1 ,f
(w)
2 )

from Fig. 3. The calibration matricesM i i = 1, . . . , 5, were
computed from Eq. (15). In this table, all 1559 object reflectanc
in R1 were employed to calculate the calibration matrices.∆E1

is the mean perceptual error between the true tristimulus valu
and the estimate from the correspondingM i for a given illumi-
nantLi. ∆E2 is the average mean perceptual error over 10
trials. The mean perceptual error in each trial is the error be
tween the true tristimulus value and the estimate fromM i in
the presence of random noise∼ U [−0.005, 0.005]. ∆E3 is the
maximum mean perceptual error from these 100 trials. Hen
∆E1 indicates the performance of the system without measu
ment noise,∆E2 indicates the robustness of the system, and∆E3

indicates the worst case scenario.

We implemented the multi-exposure camera system
ing Wratten filters(f (w)

1 ,f
(w)
2 ) and evaluated its perfor

mance by conducting experiments on 278 Munsell co
chips illuminated by daylight in a Macbeth SpectraLig
II viewing booth. We shall refer to this set as the testi
set T1. In our experiment, the pictures were taken un
daylight rather than camera flash because we did not h
the capability to synchronize the shutter of our spectro
diometer and the camera flash. The experimental res
are listed in Table 2. Note that the calibration matric
519
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were computed prior to the experiment using the data
R1. None of the test samples in T1 were involved in th
computation.

Even though the calibration matrices can be pre-com
a scaling procedure is necessary since the calibration
trices calculated from Eq. (15) are not invariant to the ca
era exposure time and the distance from the sample to
camera. We used the following procedure. First, we to
pictures of a sample with known reflectancerw using the
digital camera with theith filter f i to acquire the data
R

(i)
w , G

(i)
w , andB(i)

w , i = 1, 2, . . . , Nf . Then we computed

the scaling factorsρ(i)
R , ρ

(i)
G , andρ(i)

B for the ith exposure
by taking the ratio between the simulated camera outp
rwLdiag(f i)Dj , j = R,G,B and the measured came

outputsR(i)
w , G

(i)
w , andB(i)

w of that sample. That is, ρ
(i)
R

ρ
(i)
G

ρ
(i)
B

 =

 (rw ·L · diag(f i) ·DR)/R
(i)
w

(rw ·L · diag(f i) ·DG)/G
(i)
w

(rw ·L · diag(f i) ·DB)/B
(i)
w

 . (17)

Here,DR,DG, andDB are31×1 camera sensitivities in
the red, green, and blue channels. Note thatrw is 1 × 31.
The pre-computed calibration matrices are then adjus
by pre-multiplication with the scaling matrix

MS = diag
(
ρ

(1)
R , ρ

(1)
G , ρ

(1)
B , . . . , ρ

(Nf )
R , ρ

(Nf )
G , ρ

(Nf)
B

)
. (18

For completeness, we applied the regression met
(see Ref. 5) with our multi-exposure camera system
well. Half of the samples in T1 were randomly selected
the training set for computing calibration matrices

M i = (StS)−1ST i, i = 1, 2, . . . , 5. (19)

They are then applied to the entire set T1. The experim
tal results are shown in Table 3.

4. Discussion

The filters for system 1a were designed for flash-flash on
whereas the filters for system 1b were designed to m
mize the maximum error under 5 illuminants. Therefo
we expect, as observed from Tables 1a and 1b, that
worst case errors for 1b will be less than those for 1a.
the other hand, we would also expect that under flash i
mination, the errors for system 1a should be less than th
for system 1b. However, by comparing Eqs. (14) and (1
we see that the cost termεs is relatively more important in
the single-illuminant case than in the multi-illuminant ca
since we took the maximum value of the cost termsε

(i)
t in

the latter case. As a result, system 1a has a smoother
pair, but does not perform better than system 1b under
flashlight.
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By comparing Tables 1b and 2, it is obvious that t
experimental results are degraded with respect to the si
lation results. This is because 1) there exist various sou
of error including the measurement of camera sensitivit
and filter transmittances, the camera outputs themsel
and the tristimulus measurement using the spectroradio
ter, and 2) the filter sets are designed for pictures ta
under the camera flash rather than under the daylight.

Flash E A F Daylight max.

∆E 4.46 4.98 4.70 5.86 4.60 5.86

Table 2: Experimental results for a 2-exposure 5-illuminant co
orimetry system using Wratten filters, WR11+WR85N6 and W
+WR80B. The test samples in T1 were illuminated under d
light in a Macbeth viewing booth. In this colorimetry system
the calibration matricesM i i = 1, . . . , 5, were computed off
line from Eq. (15) using data of (i) the measured spectral pow
distribution of the daylight, (ii) the measured transmittance
(f

(w)
1 ,f

(w)
2 ) in Fig. 3c, (iii) the collected reflectances in R1, an

(iv) the measured scaling factors for each channel. Note that
pictures of the test samples were taken under daylight. Th
RGB’s were then employed to estimate the tristimulus values
ingM i.

Flash E A F Daylight max.

∆E 1.78 1.85 1.85 1.97 1.83 1.97

Table 3: Experimental results for a 2-exposure 5-illuminant co
orimetry system using Wratten filters, WR11+WR85N6 and W
+WR80B. The test samples in T1 were illuminated under dayli
in a Macbeth viewing booth. In this colorimetry system, the ca
bration matricesM i i = 1, . . . , 5, were computed by the regres
sion method described in Ref. 5, using half of the samples in
and Eq. (19). These matrices were then applied to the entire
set.

Comparing Tables 2 and 3, we see that the regress
based method performs better than our model-based m
This is because the model-based approach is affected b
rors in measuring camera sensitivities and filter transm
tances, while the regression-based method is not. H
ever, the model-based approach provides a basis for
signing the filters in the measurement device, whereas
regression-based approach can only operate when the
surement device is given. Furthermore, the model-ba
approach is more flexible. Unlike the regression-bas
method, its calibration matrices can be easily updated w
out any calibration effort. For example, if we want to app
the same multi-exposure camera system to assess the
of human teeth, the calibration matrices can be upda
by choosing a reference data set R1 that contains only
reflectances of human teeth and re-computing Eq. (1
When we apply the regression method for the same s
nario, it is necessary to acquire a training set of cam
620
u-
es
s
s,
e-
n

-
38A
y-
,

r
f

e
se
s-

-
38A
t

-

1
1

n-
hod.
er-
t-
w-
e-

he
ea-
ed
d

h-

olor
d

he
).
e-
ra

data from human teeth before the calibration matrices c
be updated.

5. Conclusion

In this paper, we proposed a methodology for utilizing di
ital cameras for imaging colorimetry. This technique r
quires little effort in color calibration once the system cha
acteristics are identified. Our method possesses sev
advantages. First of all, it takes several important issu
such as system robustness, filter smoothness, and per
tual errors in color assessment into account. Secondly,
calibration matrices can be pre-computed with a suita
collection of reflectances R1. Finally, this method allow
great flexibility in application-dependent design when t
illumination conditions and the reference data collecti
R1 are properly chosen. We verified our technique by i
plementing a colorimetry system for general purpose co
assessment and conducting experiments on 278 Mun
color chips.
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