
High Precision Color Management
by Polor Coordinate Division in CIELAB Space

Atsumi Ishige, Hiroaki Kotera and Chen Hung-Shing
Department of Information and Image Sciences, Chiba University

r

Copyright 1998, IS&T
Abstract

A variety of color calibration technologies has been devel-
oped for input/output devices. Linear or nonlinear matrices
have been conveniently applied to correct the color filter’s
mismatch in scanner or suppress the cross talks of colorants
in printer. The color matching errors are furthermore reduced
when the nonlinear matrices are optimized in subdivided
smaller spaces than in an entire color space. This paper pro-
poses a new method for partitioning the color space into sub-
spaces to improve the accuracy. Linear or nonlinear color cor-
rection functions are applied to each subspace and the matri-
ces are optimized individually. The new method resulted in
the high precision color matchings with rms color differences
∆E

ab
*(rms) ≤ 0.5 for flat bed scanner and ∆E

ab
*(rms)≅ 2.0 for

inkjet printer. The accuracies are approaching to the measure-
ment errors in scanner and mechanical stabilities in printer.

Introduction

The color management is a key technology to repro-
duce the accurate colors across the different media. The color
signals from input devices should be calibrated to carry the
correct tristimulus values and the color masking process is
indispensable for printer or copier to eliminate the cross talks
in colorants. Linear and nonlinear correction matrices have
been conveniently applied to reduce the colorimetric errors in
scanner3,5,7 or printer1,4,6,8.  The accuracy can be furthermore
improved when the matrices or look-up tables in device pro-
files are optimized in subdivided spaces than in entire space2,9.

This paper discusses the partitioning method of input
color space into subspaces, where the equal number of the
color samples are included in every subspaces to determine
the correction matrices3.  Linear or nonlinear color correction
functions are applied to each subspace and the transform ma-
trices are optimized in individual subspace.

Color Reproduction System Model

Fig. 1 shows the basic color reproduction system model.
An input color scanner is modelled as a forward transformer
from input tristimulus value T to signal X, while an output
printer also works as forward transformer from the drive sig-
nal Y to tristimulus value T.  In the color management system,
the scanner signal X=[R, G, B]t is calibrated to carry the cor-
rect tristimulus value T =[X, Y, Z]t by placing its inverse trans-
former from  X to T behind the input device as follows.

T=ΦIN
-1(X)≅MSCANfS(X) (1)

As well, the color corrector placed in front of printer also works
as the inverse transformer from the target tristimulus value T
to printer drive signal Y=[C, M, Y]t  as

Y=ΦOUT
-1(T)≅MPRNTfP(D) (2)
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Here, the inverse transfiorms Φ
IN

-1(X) and Φ
OUT

-1(T) are charac-
terized by polynomial expansions f

S
(X) and f

P
(D) derived from

the device input signals.
In the printing subsystem,  f

P
(D) includes two steps of signal

conversions. First, CIE-XYZ  tristimulus input T is transformed
into CIE-RGB signal X

RGB 
by 3x3 linear matrix M

RGB
 as

X
RGB

=[R, G, B]t=M
RGB

T (3)
Next, X

RGB
 is converted into logarithmic density signal D

RGB
by

 D
RGB

=[-log
10

R, -log
10

G, -log
10

B]t=[D
R
, D

G
, D

B
]t (4)

The matrices M
SCAN

 and M
PRNT

 are optimized to minimize the
approximation errors in Eq. (1) and Eq. (2) by the method of
least squares.

Fig.1  Basic system model

Subspace Models

In the simple color matching system, single matrices
M

SCAN
 in scanner and M

PRNT
 in printer are uniformly applied

to correct all of the pixels.  A most simple way is to divide the
entire space into tri-linear boxes with constant volume as
shown in Fig.2, where each subspace includes uneven num-
ber of color samples.  The smaller is the volume of subspace,
the higher the color matching accuracy.  However, as the num-
ber of partitions increases in the conventional tri-linear divi-
sion, the enough sample number to determine the color cor-
rection matrices is not always guaranteed in every cubes.
Fig.3 (a), (b), and (c) illustrate the proposed methods. Here all
the subspaces are partitioned to include the same number of
color samples bounded with nonuniform intervals.

[1] LAB vector division ; M divisions in LAB vector radius 
r

j
 ≥  ∆r

j
  >  r

j-1      
;  j=1~M, r= {L* 2+a* 2+b* 2}1/2 (5)

CIELAB space is divided by 1-D radius r
j
 to include the con-

stant samples in every spherical cores.
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[2] LC division  ; J divisions in L* and K divisions in C*
L*

j
 ≥ ∆L*

j
 ≥ L*

j-1
 ,   C*

k
 ≥ ∆C*

k
 ≥ C*

k-1 
  ; j=1~J, k=1~K

C*={a*2+b*2}1/2 (6)
CIELAB space is partitioned into totally M=J x K subspaces
along the  2-D luminance-chrominance (LC) axes to include
the constant samples in every subspace divided by ∆L

j
 and

∆C*
k
.

[3] Polar division ; J divisions in hue angle and K divisions 
LAB vector radius r
θ

j
 ≥ ∆θ

j 
 ≥  θ

j-1      
; j=1~J, θ=tan -1(b*/a*)

r
k 
≥ ∆r

k
 ≥ r

k-1
          ; k=1~K (7)

CIELAB space is partitioned into totally M=J x K subspaces
along the 2-D polar axes to include the constant samples  in
every subspace surrounded by sector angle ∆θ

j 
 and radius ∆r

k
.

Calibration for Scanner
In the calibration of scanner, IT8/7.2 standard color

targets are used as inputs. Here, the XYZ tristimulus values
T

n
=[X

n
, Y

n
, Z

n
]t  for n=1~N=256  color chips are measured by

spectro-colorimeter as original test targets. Thus the number
of samples included in each subspace is set as

Q=N/M=constant (8)
The boundaries between subspaces are determined for each
subspace to include Q samples inside.
Letting the color scanner RGB signals be X m 

q   ( q=1~Q,
m=1~M ) corresponding to the input XYZ tristimulus values
T m 

q  for the m-th subspace, the calibration is performed by the
following mathematical transformation.

T ˆ m 
q = M m 

S f S ( X m 
q ) ñ T m 

q (9)

Here the scanner signal X m 
q  is transformed to be

matched to T m 
q  by a polynomial expansion f

S
(arg) and the co-

efficient matrix M
SCAN

 in Eq.(1) is determined to be partitioned
into {M m 

S }  for individual subspace m=1~M .
The matrix M m 

S  is optimized so as to minimize the mean square
error between the original tristimulus value T m 

q  and the ap-
proximation T ˆ m 

q 

e 2 = 
1 
Q 

Q 

3 
q = 1 

7 T m 
q − T ˆ m 

q 

2 

? = 
1 
Q 

Q 

3 
q = 1 

7 T m 
q − M m 

S f S ( X m 
q ) 

2 ?  (10)

Thus the solution is given by

M m 
S = T m 

Q f 
t 
S ( X m 

Q ) f S ( X m 
Q ) f 

t 
S ( X m 

Q ) 
− 1           (11)

where, T m 
Q  denotes the tristimulus matrix of Q samples in m-

th subspace.

T m 
Q = 

X m 
1 ,   X m 

2 ,   ̨  ,   X m 
Q 

Y m 
1 ,   Y m 

2 ,   ̨  ,   Y m 
Q 

Z m 
1 ,   Z m 

2 ,   ̨  ,   Z m 
Q 

          (12)

As well, X m 
Q  denotes the scanner signal matrix of Q samples

in m-th subspace.

X m 
Q = 

R m 
1 ,   R m 

2 ,   ̨  ,   R m 
Q 

G m 
1 ,   G m 

2 ,   ̨  ,   G m 
Q 

B m 
1 ,   B m 

2 ,   ̨  ,   B m 
Q 

          (13)
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and f S ( X m 
Q )  represents the scanner signal matrix expanded by

polynomials of Q samples in the same m-th subspace. For ex-
ample, in the case of 2 nd order polynomials, it is given by 10
terms x Q samples matrix as follows.

(14)

Color Correction for Printer
The inverse transform Φ

OUT
-1(T) in printer is known as

“color masking” to remove the cross talks in colorants.  The
forward transform of printer is characterized by measuring
the tristimulus values T m 

q = [ X m 
q ,   Y m 

q ,   Z m 
q ] 

t  of printed color
patches for drive signal Y m 

q = [ C m 
q ,   M m 

q ,   Y m 
q ] 

t  as

T m 
q = Φ m 

P ( Y m 
q ) (15)

Here, the N=512  color patches are printed and their tristimulus
values T

n
=[X

n
, Y

n
, Z

n
]t ; n=1~N are measured. Then {T

n
} are

partitioned into M sets of {T m 
q }, each including Q=N/M

samples for q=1~Q in m=1~M subspaces.
First, the measured tristimulus value T m 

q  is converted into loga-
rithmic density signal D m 

q  corresponding to the CMY drive sig-
nal as given in Eq. (3) and Eq, (4). Then, the inverse trans-
form from T m 

q  to Y m 
q  is approximated by polynomial expan-

sion. The coefficient matrix M m 
P  is optimized to minimize the

mean square error between the drive signal Y m 
q  and its ap-

proximation Y ˆ m 
q , which is given by

M m 
P = Y m 

Q f 
t 
P ( D m 

Q ) f P ( D m 
Q ) f 

t 
P ( D m 

Q ) 
− 1 (16)

D m 
Q = 

D m 
R 1 ,   D m 

R 2 ,   ̨  ,   D m 
R Q 

D m 
G 1 ,   D m 

G 2 ,   ̨  ,   D m 
G Q 

D m 
B 1 ,   D m 

B 2 ,   ̨  ,   D m 
B Q 

(17)

(18)

f S ( X m 
Q ) = 

   Rm 
1 ,      R m 

2 ,     ˛ ,      R m 
Q    

   Gm 
1 ,     G

m 
2 ,     ˛ ,      G m 

Q    

   Bm 
1 ,      B m 

2 ,     ˛ ,      B m 
Q    

( R m 
1 ) 

2 ,   ( R m 
2 ) 

2 ,   ̨  ,     ( R m 
Q ) 

2 

( G m 
1 ) 

2 ,   ( G m 
2 ) 

2 ,   ̨  ,   ( G m 
Q ) 

2 

( B m 
1 ) 

2 ,   ( B m 
2 ) 

2 ,   ̨  ,   ( B m 
Q ) 

2 

( R m 
1 G m 

1 ) ,   ( R m 
2 G m 

2 ) ,   ̨  ,   ( R m 
Q G m 

Q ) 

( G m 
1 B m 

1 ) ,   ( G m 
2 B m 

2 ) ,   ̨  ,   ( G m 
Q B m 

Q ) 

( B m 
1 R m 

1 ) ,   ( B m 
2 R m 

2 ) ,   ̨  ,   ( B m 
Q R m 

Q ) 

        1 ,            1 ,      ˛ ,      1         

f P ( D m 
Q ) = 

   Dm 
R 1 ,      D m 

R 2 ,     ˛ ,       D m 
R Q    

D m 
G 1 ,      D m 

G 2 ,     ˛ ,       D m 
G Q 

D m 
B 1 ,      D m 

B 2 ,     ˛ ,       D m 
B Q 

( D m 
R 1 ) 

2 ,   ( D m 
R 2 ) 

2 ,   ̨  ,      ( D m 
R Q ) 

2 

( D m 
G 1 ) 

2 ,   ( D m 
G 2 ) 

2 ,   ̨  ,      ( D m 
G Q ) 

2 

( D m 
B 1 ) 

2 ,   ( D m 
B 2 ) 

2 ,   ̨  ,      ( D m 
B Q ) 

2 

( D m 
R 1 D m 

G 1 ) ,   ( D m 
R 2 D m 

G 2 ) ,   ̨  ,   ( D m 
R Q D m 

G Q ) 

( D m 
G 1 D m 

B 1 ) ,   ( D m 
G 2 D m 

B 2 ) ,   ̨  ,   ( D m 
G Q D m 

B Q ) 

( D m 
B 1 D m 

R 1 ) ,   ( D m 
B 2 D m 

R 2 ) ,   ̨  ,   ( D m 
B Q D m 

R Q ) 

      1 ,             1 ,        ˛ ,          1         
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Fig.2  Uniform tri-linear division
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Fig.3  Division methods into subspaces
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Experimental Results

 The subspace models have been tested on a flat bed
scanner and an inkjet printer. N=256 color chips in IT8/7.2
standard chart were used for scanner calibration and N=83=512
color patches were generated on the inkjet printer driven by
cmy signals Y

i
=[C

i
, M

i
, Y

i
]t and their tristimulus values T

o
=[X

o
,

Y
o
, Z

o
]t were measured by spectro-colorimeter. Thus, the ma-

trices in printer are calculated by data set {Y
i
, T

o
}

i,o=1~512
.

Fig. 4 shows the calibration errors ∆E*
ab

(rms) for flat
bed scanner in case of M=8. In all cases, the calibration accu-
racy has been improved for the higher order polynomials. In
order to apply the polynomials with P terms, every subspace
should include at least Q  ≥ P samples. However, it was im-
possible for uniform tri-linear division to apply 3 rd order
matrix with P=20 in M=8, because of Q < P. Moreover 2 nd
order matrix did not give any credit to linear matrix. This may
be caused by the uneven sample numbers between the sub-
spaces. On the other hand, proposed division methods resulted
in the dramatic improvements in calibration errors. The rms
errors by 2 nd order matrix in M=8, were ∆E*

ab
(rms)=0.90,

0.75, and 0.77 for LAB vector division, LC division, and Po-
lar division respectively. These errors have been furthermore
improved to ∆E*

ab
(rms)=0.47, 0.35, and 0.39 for the use of 3

rd order terms.  Fig. 5 shows the best result in ∆E*
ab

(rms)=0.35
with calibrated IT8/7.2 color map in a*-b* plane.

Fig.6 shows the results for inkjet printer in case of M=8.
The correction matrices are optimized by using the printed
color patches as trained targets. Here ∆E*

ab
(rms) is estimated

for N=512 non-trained color targets generated by a different
combination of CMYs. Roughly speaking, the color correc-
tions worked very well for non-trained targets as well as trained
targets with almost the same accuracy. As clearly shown, the
subspace division methods resulted in higher precision color
matching than the conventional single matrix method without
division.  In general, ∆E*

ab
 is extremely reduced by higher

order matrices. However, in the uniform tri-linear division,
the best result was given by 2nd order correction, while
∆E*

ab
(rms) increased for 3rd order correction. This may be

caused by the same reason as scanner due to uneven color
sample numbers. The best correction for trained targets was
obtained by LAB vector division with 3rd order polynomials,
resulting in ∆E

ab
*(rms)≈1.5.  In the correction for non-trained

targets, the best result was obtained by LC division with 3 rd
order polynomials, resulting in ∆E

ab
*(rms)≅2.1. Polar divi-

sion showed stable and excellent results in both trained and
non-trained estimations.  It resulted in ∆E

ab
*(rms)≅2.7 by 2

nd order and ≅2.2 by 3 rd order correction for trained targets
and ∆E

ab
*(rms)≅2.6 by 2 nd order and ≈2.4 by 3 rd order cor-

rection for non-trained target. Fig.7 shows an example of re-
produced color targets in a*-b* plane after printer correction.

Fig.8 illustrates how the correction error decreases as
the division number M increases in case of Polar  division for
trained targets. The rms errors are reduced monotonously with
the division number M. The color differences are going to
approaching to around ∆E

ab
*(rms)≅1.5 as the M increases.

Discussion and Conclusion

The high precision color calibrations for input/output
devices have been approached by the optimization in subdi-
vided color spaces. Nonuniform division to subspaces, includ-
ing the equal number of color samples in each, makes it pos-
sible to use the higher order of nonlinear matrices. In the ap-
plication to scanner, the calibration accuracy could be
Science, Systems, and Applications       203
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Fig.4  Calibration errors in flat bed PC scanner

Fig.5  Calibrated IT8/7.2 target in flat bed PC scanner

dramatically improved by operating the nonlinear matrices
with 2 nd order or 3 rd order polynomials optimized in each
subspace. The rms color differences as well as maximum color
differences could be reduced to about 1/5  as compared with
conventional methods, reaching to ∆E

ab
*(rms)≅0.35 and

∆E*
ab

(max)≅1.6 for scanner. These values may be comparable
to the colorimetric measurement errors.

In the application to printer color correction, the pro-
posed method resulted in high precision reproductions around
∆E

ab
*(rms)≅2 for inkjet printer. 1-D LAB vector division

worked well resulting in ∆E
ab

*(rms)≅1.5 with 3 rd order ma-
trix.  2-D Polar division worked stable for both trained and
non-trained targets. It approached to ∆E

ab
*(rms)≅1.5 for trained

targets.  LC division with 3rd order matrix resulted in the high-
est reproduction with ∆E

ab
*(rms)≅2.1 for non-trained targets.

These values are almost approaching to the mechanical sta-
bility around ∆E

ab
*(rms)≅1.0 in low-end use.

The gamut compression process is not included in this
paper but necessary for the inputs outside the printer gamut
and is under development.

(a) Original (b) LC M=8 div., 3 rd order :
      ∆ E*

ab
(rms)=0.35

a*

b*

a*

b*
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