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Abstract

We propose an iterative method for color printer charac
ization. We employ a parametric spectral model for co
printers based on cellular YNSN (Yule-Nielsen modifi
spectral Neugebauer) equations. We find the Yule-Nie
parameter from least squares regression over a trainin
of spectral measurements using the Euclidean distanc
spectral distributions space as the error criterion. We i
atively divide the cells in the colorant space until the av
age prediction error∆E in every cell is less than a give
value.

1. Introduction

Modern color management systems require that color p
ers be characterized in some device independent color
such as CIE (Commission Internationale de L’Éclairage)
L*a*b*. To characterize a3 colorant printer in the CIE
L*a*b* space, we must evaluate the printer transfer fu
tion which maps points in the printer inputCMY (cyan,
magenta, yellow) colorant space to the points in the pri
output CIEL*a*b* space for every point in theCMY
space, i.e. every possible colorant combination. The hig
complex nonlinear interaction of the colorants with ea
other and the paper substrate require that a very large n
ber of sample color patches be printed and measured
accurate empirical characterization of a color printer. T
characterization should be repeated each time there
change in the colorants or a change in the paper subst

The alternative approach is to model the printer c
orimetrically, or spectrally, or to model the printing pr
cess physically. Using model based approaches, a c
printer can be characterized using a small number of
rameters. Therefore, these approaches require cons
ably fewer measurements than the empirical ones. In
paper, we propose an iterative approach to printer cha
terization based on cellular YNSN (Yule-Nielsen modifi
spectral Neugebauer) equations, using a parametric s
tral model.
The Sixth Color Imaging Conference: Color S
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2. Neugebauer Color Mixing Model

One of the very first and the most commonly used sp
tral model that mathematically describes the color print
process is the Neugebauer color mixing model. Neu
bauer [1] noted that there are 8 dominant colors, kno
as the Neugebauer primaries, namely white(W ), cyan(C),
magenta(M ), yellow(Y ), red(R), green(G), blue(B), and
black(K) for the case of a 3 colorantCMY color printer.
These primaries correspond to one, two, and three c
overprints of the colorantsC, M , Y or to no colorant on
paper (W ). Geometrically, Neugebauer primaries can
interpreted as the vertices of a unit cube in theCMY col-
orant space with the vertices{0, 0, 0} ≡ W , {1, 0, 0} ≡
C, {0, 1, 0} ≡ M , {0, 0, 1} ≡ Y , . . . , {1, 1, 1} ≡ K. An
alternative labeling of these primaries is thereforeW , C,
M , Y ,MY , CY ,MY , andCMY respectively.

The spectral Neugebauer equations state that

R(λ) =
8∑
i=1

wiRi(λ), (1)

whereR(λ) is the predicted spectral distribution as a fun
tion of wavelengthλ of a given patch printed using 3 co
orants,Ri(λ) is the spectral distribution of the patch wit
only thei-th Neugebauer primary on it, and the weightwi
is the fractional proportion of thei-th Neugebauer primary
in the given patch.Ri(λ) is defined as

Ri(λ) = Ci(λ) S(λ), (2)

whereCi(λ) is the spectral distribution of the coloran
combination fori-th Neugebauer primary andS(λ) is the
spectral distribution of the paper substrate.

Neugebauer employed Demichel’s dot overlap mo
where the dots are assumed to be placed using a ran
or rotated screen [2],[3]. Furthermore, the colorant la
is assumed to be uniform and the boundaries of the d
are assumed to be well defined. Under these assumpt
the weightswi are called Demichel coefficients; and the
are equal to the probability of occurrence of the respec
cience, Systems, and Applications       197
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Neugebauer primaries on a given patch. They can be in
preted as the expected values of the fractional area co
age of the primaries.

An important optical phenomenon that the Demich
dot overlap model fails to account for is optical dot ga
Optical dot gain is defined as the change in measured
flectance due to interactions between the colorants and
paper substrate, mainly due to lateral scattering of ligh
the substrate. Yule and Nielsen [4] modified the Neu
bauer equation to take into account optical dot gain fo
monochrome printer and empirically found the followin
power law expression

R(λ)
1
n = wBRB(λ)

1
n + wWRW (λ)

1
n , (3)

whereRB(λ) andRW (λ) are the spectral distributions o
the black ink and white paper respectively. The facton
is called the Yule-Nielsen factor. It is empirically derive
from the best fit of the model to the training data set.

Viggiano [5] extended the Yule-Nielsen equation (
to the case of color halftones and obtained the follow
Yule-Nielsen modified spectral Neugebauer equation.

R(λ)
1
n =

8∑
i=1

wiRi(λ)
1
n . (4)

It has been shown that inclusion of the Yule-Nielsen fac
significantly improves the fit of the model to the trainin
data set [2], [3].

Like the Yule-Nielsen factor, the cellular framewo
introduced by Heubergeret al also increased the accurac
of Neugebauer color mixing models considerably [6], [
This framework is the geometric extension of the unit cu
inCMY to a uniformly sampled lattice structure inCMY .
The unit cube inCMY is subdivided into smaller sub
cells with vertices at uniformly sampled grid points in th
CMY domain. In addition to the spectral distributions
the 8 Neugebauer primaries, the spectral distributions
the vertices of the subcells are also measured. This fi
structure provides a higher level of accuracy at the cos
more spectral measurements [7], [3].

3. Model Based Color Printer
Characterization

Many researchers have studied the application of the c
mixing models described above and other color mix
models to the problem of color printer characterizatio
Rolleston and Balasubramanian [7] compared the per
mances of colorimetric and spectral, Yule-Nielsen mo
fied and simple, non-cellular and cellular Neugebauer e
tions. Kang [8] also compared the accuracy of spec
Neugebauer and Yule-Nielsen modified spectral Neu
bauer equations along with three other color mixing mo
The Sixth Color Imaging Conference: Color S
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els: Clapper-Yule multiple internal reflections model, Be
Bouger law, and Kubelka-Munk theory. Balasubraman
[3] studied the effects of using the cellular framework a
incorporating the Yule-Nielsen factor in the spectral Neu
bauer equations.

Emmelet al [9] used a grid-based method to colo
metrically predict the behavior of color printers which a
counts for the varying density of the colorants on the d
and the light diffusion in the underlying paper substra
Changet al [10] proposed a method based on Newto
minimization technique to estimate the fractional prop
tions of the Neugebauer primaries more accurately us
additional non-primary Neugebauer colors. Lee [11]
plied an optimization technique called sequential quadr
programming to estimate the Yule-Nielsen modified sp
tral Neugebauer model parameters for a color halftone p
ter. Balasubramanian [12] carried out a weighted le
squares regression over the training set of spectral distr
tion measurements to create a Yule-Nielsen modified s
tral Neugebauer model.

Hua and Huang [13] employed a model which th
called the advanced cellular YNSN (Yule-Nielsen mo
fied spectral Neugebauer) model where the weighting
efficientswi in (4) showing the fractional proportions o
the Neugebauer primaries are functions of wavelengtλ
instead of constants. Meireson and Van De Capelle
proposed a new mathematical expression for the color m
ing in HIFI color printers (color printers with more than
colorants) that is motivated by the Yule-Nielsen modifi
spectral Neugebauer model and the Kubelka-Munk the

4. Our Method

For a 3 colorantCMY color printer, we start by measurin
the spectral distributions and calculating the CIEL*a*b*
values of the27(3× 3× 3) samples corresponding to th
various combinations of0%, 50% and100%C,M , andY
colorants. These samples can be interpreted as the p
of the grid formed by dividing the unit cube in theCMY
colorant space, at the planesC = 1

2 ,M = 1
2 , Y = 1

2 . The
8 vertices of this subdivided unit cube correspond to th8
Neugebauer primaries.

Using the Yule-Nielsen modified spectral Neugeba
equation (4) and the spectral distributions of the 8 Neu
bauer primaries,Ri(λ), i = 1, 2, . . . , 8, we carry out a
least squares regression over the spectral distribution
the remaining21 samples. We assume thatwi is the frac-
tional proportion of thei-th Neugebauer primary in th
given sample. We find the Yule-Nielsen factorn that min-
imizes RMS (root-mean-squared) Euclidean distance
tween the predicted and measured spectra in the36 di-
mensional spectral distributions space (R(λ), sampled at
λ = 380, . . . , 730 nm) , for the21 training non-primary
cience, Systems, and Applications       198
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color samples.
Once the Yule-Nielsen factor and hence the spec

model for the printer are determined, we measure the a
racy of the model. We calculate the∆E prediction errors
for the21 training samples and find the RMS∆E predic-
tion error at the vertices of each of the8 subcells in the uni
cube formed by dividing it at the planesC = 1

2 , M = 1
2 ,

Y = 1
2 . We further divide the subcells with RMS∆E

prediction error above a given threshold into8 subcells.
After each subdivision, we measure the accuracy of

model in terms of RMS∆E, at the vertices of the newl
created8 subcells by going back to the grid structure rig
before the subdivision and predicting the reflectance s
tra of the grid points that we will be adding to the gr
structure with the given subdivision.

We continue dividing the subcells into8 until the RMS
∆E prediction error in every subcell is below a given thr
hold value or until we reach the resolution of the fin
grid in theCMY colorant space. This method of”looking
back” into the previous grid structure to make decisions
go finer in the grid structure allows us to efficiently cre
grid structures without the cost of additional testing sp
tral measurements. Our iterative subdivision technique
sults in a probably unbalanced, oct-tree structured grid
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Figure 1: The iterative division technique for a2-D grid struc-
ture.

In Fig. 1, we show in2-D for ease of presentatio
the iterative subdivision technique explained above on
Y = 0 plane of theCMY unit cube. We start with a
unit square grid structure with4 grid points as shown in
Fig. 1a. We divide the unit square into4 subcells at the
linesC = 1

2 andM = 1
2 . We now have a grid structur

with 9 grid points ,5 of which are newly added to the gr
structure and are shown with× in Fig. 1b. We predict
the spectral distributions of these5 points using the orig
inal 4 grid points, shown with© in Fig. 1b. For each o
The Sixth Color Imaging Conference: Color 
al
u-

e

t
c-

-
t

o

-
e-

e

the newly formed subcells, we find an RMS∆E predic-
tion error using the3 newly added grid points per subce
e.g.Fig. 1c shows the3 grid points (shown with×) used
in calculating the RMS∆E prediction error for the up
per left subcell. We further divide the subcells with RM
∆E prediction error greater than a threshold. Let us
sume that only the prediction errors in the upper left a
the lower right subcells exceed the given threshold va
We divide both of these subcells into4 subcells and ob
tain the grid structure shown in Fig. 1d, where again
previously existing grid points are shown with© and the
newly added ones are shown with×. Now, for each of
these recently created8 subcells, we need to”look back”
to the previous grid structure and compute the accu
of the model by interpolating the spectral distributions
the3 vertices of each subcell which are recent addition
the grid structure. For example, to find the RMS∆E pre-
diction error for the lower right subcell of the lower rig
subcell, we predict the spectral distributions of the3 grid
points shown with× in Fig. 1e using the4 closest grid
points shown with�. We terminate dividing the subcel
when the RMS∆E prediction error is below a given thre
hold value or when we reach the resolution of the fin
grid in theY = 0 CM colorant plane, in every subcell.

5. Experimental Results

We have tested our iterative color printer characteriza
method on a HP 692C 300dpi color inkjet printer with3
colorants (CMY ). Our test data consisted of the spec
distributions of4913 print samples uniformly located i
theCMY space (the points in a uniform grid of size17×
17×17) measured with a Gretag SPM50 spectrophoto
ter and their calculated CIEL*a*b* values underD50 illu-
mination. The27 samples (8 primary and21 non-primary
colors) in the grid one level finer than the unit cube (u
cube divided into8 subcells) were used to calculate t
Yule-Nielsen factorn. Through a least squares regress
inR(λ), the optimal value fornwas found to be1.6. Then,
the iterative subdivision of the subcells was carried out
ing different thresholds for each level of the grid.

After the algorithm terminated, the selected grid poi
were used to interpolate the spectral distributions of4913
test samples using the cellular Yule-Nielsen modified sp
tral Neugebauer model (4) with a Yule-Nielsen factorn
of 1.6. We then computed RMS∆E prediction error be-
tween the4913 samples and their interpolated values. F
comparison, we have also computed RMS∆E prediction
errors for uniform grids of size27(3×3×3), 125(5×5×5),
729(9× 9 × 9), and4913(17× 17× 17), with and with-
out using a Yule-Nielsen factorn of 1.6. Fig. 2 displays the
variation of RMS∆E between the predicted and measu
spectra of the test samples, as a function of the numb
Science, Systems, and Applications       199
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Figure 2: RMS∆E error performance.

grid points selected by the iterative algorithm; and co
pares its performance to uniform grids. The error perf
mance of our algorithm equals that of uniform grids usi
a Yule-Nielsen factor and performs better than linear p
diction using uniform grids without a Yule-Nielsen facto
With our method, we can create a grid of size that does
correspond to a uniform grid structure to achieve a giv
target RMS∆E prediction error. For example, to achiev
an RMS∆E performance better than or equal to3 units, a
uniform grid structure requires that we use the9 × 9 × 9
grid structure with729 grid points. With our approach, we
can achieve this level of performance with about607 grid
points. Similarly, to achieve an RMS∆E performance
better than or equal to1 unit, a uniform grid structure re
quires the full4913 point data set as grid points, where
our method can achieve this level of prediction accura
with about3448 grid points.

6. Conclusion

In this paper, we developed an iterative method to cha
terize color printers employing a parametric cellular YNS
(Yule-Nielsen modified spectral Neugebauer) model. O
results indicated that our method offers a means for cho
The Sixth Color Imaging Conference: Color S
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ing lookup table sizes that do not correspond to a unifo
grid structure and creating a grid structure that will achie
a given target RMS∆E prediction performance.
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