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Abstract 2. Neugebauer Color Mixing Model

We propose an iterative method for color printer characterOne of the very first and the most commonly used spec-

ization. We employ a parametric spectral model for colortral model that mathematically describes the color printing

printers based on cellular YNSN (Yule-Nielsen modified process is the Neugebauer color mixing model. Neuge-

spectral Neugebauer) equations. We find the Yule-Nielsebauer [1] noted that there are 8 dominant colors, known

parameter from least squares regression over a training sas the Neugebauer primaries, namely wiitg(cyan(C),

of spectral measurements using the Euclidean distance imagenta{/), yellow(Y"), red(R), green(s), blue(B), and

spectral distributions space as the error criterion. We iterblack(K) for the case of a 3 colorad MY color printer.

atively divide the cells in the colorant space until the aver-These primaries correspond to one, two, and three color

age prediction erroAE in every cell is less than a given overprints of the colorant§’, M, Y or to no colorant on

value. paper (V). Geometrically, Neugebauer primaries can be
interpreted as the vertices of a unit cube in &Y col-
orant space with the verticd®,0,0} = W, {1,0,0} =

1. Introduction C,{0,1,0} = M,{0,0,1} =Y, ..., {1,1,1} = K. An

alternative labeling of these primaries is therefre C,

Modern color management systems require that color printM’ Y, MY,CY, MY, andCMY respectwely.

ers be characterized in some device independent color space 1€ Spectral Neugebauer equations state that

such as CIE (Commission Internationale d&tlairage) g

L*a*b*. To characterize 8 colorant printer in the CIE _ e

L*a*b* space, we must evaluate the printer transfer func- RO = z_; wilti(A), (@)

tion which maps points in the printer inpGtMY (cyan, =

magenta, yellow) colorant space to the points in the printefvhereR () is the predicted spectral distribution as a func-

output CIE L*a*b* space for every point in th€’MY  tion of wavelength\ of a given patch printed using 3 col-

space, i.e. every possible colorant combination. The highlyrants,z;()) is the spectral distribution of the patch with

complex nonlinear interaction of the colorants with eachonly thei-th Neugebauer primary on it, and the weight

other and the paper substrate require that a very large nuni the fractional proportion of thieth Neugebauer primary

ber of sample color patches be printed and measured fgn the given patchR;()) is defined as

accurate empirical characterization of a color printer. This

characterization should be repeated each time there is a Ri(\) = Ci(\) S(\), (2)

change in the colorants or a change in the paper substrate.

The alternative approach is to model the printer col-where C;()) is the spectral distribution of the colorant
orimetrically, or spectrally, or to model the printing pro- combination fori-th Neugebauer primary ang{\) is the
cess physically. Using model based approaches, a col@pectral distribution of the paper substrate.
printer can be characterized using a small number of pa- Neugebauer employed Demichel’s dot overlap model
rameters. Therefore, these approaches require considerhere the dots are assumed to be placed using a random
ably fewer measurements than the empirical ones. In thisr rotated screen [2],[3]. Furthermore, the colorant layer
paper, we propose an iterative approach to printer charaés assumed to be uniform and the boundaries of the dots
terization based on cellular YNSN (Yule-Nielsen modified are assumed to be well defined. Under these assumptions,
spectral Neugebauer) equations, using a parametric speitie weightsw; are called Demichel coefficients; and they
tral model. are equal to the probability of occurrence of the respective
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Neugebauer primaries on a given patch. They can be inteels: Clapper-Yule multiple internal reflections model, Beer-
preted as the expected values of the fractional area coveBouger law, and Kubelka-Munk theory. Balasubramanian
age of the primaries. [3] studied the effects of using the cellular framework and
An important optical phenomenon that the Demichelincorporating the Yule-Nielsen factor in the spectral Neuge-
dot overlap model fails to account for is optical dot gain.bauer equations.
Optical dot gain is defined as the change in measured re- Emmelet al [9] used a grid-based method to colori-
flectance due to interactions between the colorants and theetrically predict the behavior of color printers which ac-
paper substrate, mainly due to lateral scattering of light incounts for the varying density of the colorants on the dots
the substrate. Yule and Nielsen [4] modified the Neugeand the light diffusion in the underlying paper substrate.
bauer equation to take into account optical dot gain for aChanget al [10] proposed a method based on Newton’s
monochrome printer and empirically found the following minimization technique to estimate the fractional propor-

power law expression tions of the Neugebauer primaries more accurately using
N L N additional non-primary Neugebauer colors. Lee [11] ap-
R(N)" =wpRp(A)"™ + wwRw(A)7, (3)  plied an optimization technique called sequential quadratic

¢ programming to estimate the Yule-Nielsen modified spec-
tral Neugebauer model parameters for a color halftone prin-
ter. Balasubramanian [12] carried out a weighted least
. - squares regression over the training set of spectral distribu-
from the best fit of the model to the training data set. q 9 g P

. . ; tion measurements to create a Yule-Nielsen modified spec-
Viggiano [5] extended the Yule-Nielsen equation (3) tral Neugebauer model P

to the case of color halftones and obtained the following :
Yule-Nielsen modified spectral Neugebauer equation Hua and Huang [13] employed a model which they
" called the advanced cellular YNSN (Yule-Nielsen modi-
8 fied spectral Neugebauer) model where the weighting co-
R(A)% = ZwiRi(A)%. (4) efficientsw; in (4) showing the fractional proportions of
i=1 the Neugebauer primaries are functions of wavelength

whereRg () and Ry () are the spectral distributions o
the black ink and white paper respectively. The faetor
is called the Yule-Nielsen factor. It is empirically derived

It has been shown that inclusion of the Yule-Nielsen factorms'[ead of constants. Meireson and Van De Capelle [14]

o . . .. “proposed a new mathematical expression for the color mix-
significantly improves the fit of the model to the training " " : . .
data set [2], [3]. ing in HIFI color printers (color printers with more than 4

: . colorants) that is motivated by the Yule-Nielsen modified
Like the Yule-Nielsen factor, the cellular framework
. . spectral Neugebauer model and the Kubelka-Munk theory.
introduced by Heuberget al also increased the accuracy

of Neugebauer color mixing models considerably [6], [7].

This framework is the geometric extension of the unit cube 4. Our Method

in CMY toauniformly sampled lattice structuredh\/Y .

The unit cube iNCMY is subdivided into smaller sub- For a3 coloran€ MY color printer, we start by measuring
cells with vertices at uniformly sampled grid points in the the spectral distributions and calculating the @Ifa*b*
CMY domain. In addition to the spectral distributions of values of the27(3 x 3 x 3) samples corresponding to the
the 8 Neugebauer primaries, the spectral distributions ofarious combinations d%, 50% and100% C, M, andY’

the vertices of the subcells are also measured. This finefolorants. These samples can be interpreted as the points
structure provides a higher level of accuracy at the cost odf the grid formed by dividing the unit cube in th@M Y

more spectral measurements [7], [3]. colorant space, at the plan€s= 3, M = 1, Y = 1. The
8 vertices of this subdivided unit cube correspond to&he
3. Model Based Color Printer Neugebauer primaries.
Characterization Using the Yule-Nielsen modified spectral Neugebauer

equation (4) and the spectral distributions of the 8 Neuge-
Many researchers have studied the application of the coldvauer primariesR;(1),: = 1,2,...,8, we carry out a
mixing models described above and other color mixingleast squares regression over the spectral distributions of
models to the problem of color printer characterization.the remainin@1 samples. We assume that is the frac-
Rolleston and Balasubramanian [7] compared the perfortional proportion of thei-th Neugebauer primary in the
mances of colorimetric and spectral, Yule-Nielsen modi-given sample. We find the Yule-Nielsen factothat min-
fied and simple, non-cellular and cellular Neugebauer equatnizes RMS (root-mean-squared) Euclidean distance be-
tions. Kang [8] also compared the accuracy of spectratween the predicted and measured spectra in3theli-
Neugebauer and Yule-Nielsen modified spectral Neugemensional spectral distributions spade&(k), sampled at
bauer equations along with three other color mixing mod-A = 380,...,730 nm) , for the21 training non-primary
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color samples. the newly formed subcells, we find an RMSE predic-
Once the Yule-Nielsen factor and hence the spectration error using th& newly added grid points per subcell,
model for the printer are determined, we measure the accle.g. Fig. 1¢ shows th8 grid points (shown withX) used
racy of the model. We calculate tieF prediction errors in calculating the RMSAFE prediction error for the up-
for the 21 training samples and find the RMSE predic-  per left subcell. We further divide the subcells with RMS
tion error at the vertices of each of tReubcells in the unit AFE prediction error greater than a threshold. Let us as-
cube formed by dividing it at the plan€s= 1, M = 3,  sume that only the prediction errors in the upper left and
Y = % We further divide the subcells with RMAE  the lower right subcells exceed the given threshold value.
prediction error above a given threshold iSteubcells. We divide both of these subcells intosubcells and ob-
After each subdivision, we measure the accuracy of théain the grid structure shown in Fig. 1d, where again the
model in terms of RMSAE, at the vertices of the newly previously existing grid points are shown wifh and the
created subcells by going back to the grid structure right newly added ones are shown witk. Now, for each of
before the subdivision and predicting the reflectance spedhese recently createtisubcells, we need tdook back”
tra of the grid points that we will be adding to the grid to the previous grid structure and compute the accuracy
structure with the given subdivision. of the model by interpolating the spectral distributions of
We continue dividing the subcells infountil the RMS  the 3 vertices of each subcell which are recent additions to
AFE prediction error in every subcell is below a given thres-the grid structure. For example, to find the RMY pre-
hold value or until we reach the resolution of the finestdiction error for the lower right subcell of the lower right
grid in theC MY colorant space. This method'tdoking subcell, we predict the spectral distributions of thgrid
back” into the previous grid structure to make decisions topoints shown withX in Fig. 1e using thel closest grid
go finer in the grid structure allows us to efficiently createpoints shown with?). We terminate dividing the subcells
grid structures without the cost of additional testing specwhen the RMSA E prediction error is below a given thres-
tral measurements. Our iterative subdivision technique rehold value or when we reach the resolution of the finest
sults in a probably unbalanced, oct-tree structured grid. grid intheY =0 CM colorant plane, in every subcell.

/ ¢

1 ! ’ ! 5. Experimental Results
M M M i We have tested our iterative color printer characterization
method on a HP 692C 300dpi color inkjet printer with
0 < 0 colorants CMY). Our test data consisted of the spectral
c 1 0 ¢ 1 distributions 0f4913 print samples uniformly located in
(b) (c) the CMY space (the points in a uniform grid of siz& x

17 x 17) measured with a Gretag SPM50 spectrophotome-
ter and their calculated CIE* a* b* values undeD50 illu-
mination. The27 samples& primary and21 non-primary
colors) in the grid one level finer than the unit cube (unit
cube divided into8 subcells) were used to calculate the
Yule-Nielsen facton. Through a least squares regression

0 ¢ 1 in R(\), the optimal value fon was found to bé.6. Then,
(d) (e) the iterative subdivision of the subcells was carried out us-
Figure 1 The iterative division technique forD grid struc-  nq different thresholds for each level of the grid.
ture. After the algorithm terminated, the selected grid points

were used to interpolate the spectral distributiong3if3

In Fig. 1, we show in2-D for ease of presentation testsamples using the cellular Yule-Nielsen modified spec-
the iterative subdivision technique explained above on théral Neugebauer model (4) with a Yule-Nielsen factor
Y = 0 plane of theC MY unit cube. We start with a of 1.6. We then computed RMAFE prediction error be-
unit square grid structure with grid points as shown in tween thet913 samples and their interpolated values. For
Fig. 1a. We divide the unit square infosubcells at the comparison, we have also computed RM%E prediction
linesC = 1 andM = 1. We now have a grid structure errors for uniform grids of siz27(3x3x3), 125(5x5x5),
with 9 grid points ,5 of which are newly added to the grid 729(9 x 9 x 9), and4913(17 x 17 x 17), with and with-
structure and are shown witi in Fig. 1b. We predict outusing a Yule-Nielsen factarof 1.6. Fig. 2 displays the
the spectral distributions of theSepoints using the orig- variation of RMSA E between the predicted and measured
inal 4 grid points, shown withO) in Fig. 1b. For each of spectra of the test samples, as a function of the number of
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ing lookup table sizes that do not correspond to a uniform
grid structure and creating a grid structure that will achieve
a given target RMQ\ E prediction performance.
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6. Conclusion

In this paper, we developed an iterative method to charac-

terize color printers employing a parametric cellular YNSN

(Yule-Nielsen modified spectral Neugebauer) model. Our
results indicated that our method offers a means for choos-
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