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Abstract
The White-Point Preserving Least Squares (WPPLS
gorithm is a method for colour correction that constra
the white point to be exactly mapped into its correct X
equivalent. For printers, however, the mapping is from
vice coordinates to colorimetric densities: the device w
is thus mapped into a zero vector and the WPPLS me
cannot go forward. Here we use a polynomial regres
model and specify that both white (the zero vector) and
average grey be exactly mapped. Moreover we exten
method to accurately but approximately map a subs
of the entire achromatic curve, thus reproducing the n
tral tones with far greater accuracy.

1. Introduction

An important consideration in colour printer calibration
finding an effective model for colour correction, i.e., ma
ping device RGB’s or CMYK’s to XYZ’s. Of course,
lookup table provides the most straightforward method
characterizing colour printers; however one is still left w
the problem of choosing an interpolation method, as w
as possible storage problems. A simple printer model
has the advantage of capturing salient features of pr
behaviour in model parameters. Understanding the s
ture of the model amounts to a better understanding o
device itself.

Luo et al.[1] showed that for a Cromalin proofing sy
tem, a Mitsubishi wax thermal-transfer printer, and an
inkjet printer a third-order masking model performed b
for the colour correction task. In this paper, we show
a similar model can be adapted to the paradigm of c
strained regression applied to printer models. We s
the following: (1) Although one cannot apply the Whi
Point Preserving Least Squares (WPPLS) method[2, 3
rectly to models based on colorimetric densities rather
tristimulus values, the method can be changed to pres
both the white point and a grey point as well, result
in a Grey Point Preserving Least Squares (GPPLS) a
rithm. The utility of this constrained regression is that
rors along the curve of grey patches are reduced to ze
two locations, and diminished along the remainder of
The Sixth Color Imaging Conference: Color S
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curve. (2) As well, for this inherently nonlinear polyno
mial regression model one can in fact almost exactly m
the entire achromatic curve in a constrained regress
Then, with little effect on the overall performance of su
a regression, neutrals are reproduced almost exactly.
denote this new method as a Greyspace Preserving L
Squares (GSPLS) transform.

2. Polynomial Regression

For concreteness, throughout we study the behaviour
Hewlett-Packard DeskJet 850C inkjet printer, characte
ing the device separately for plain and glossy paper.
this printer, one cannot directly set CMYK values, but
stead one can supply a file of device coordinates consis
of RGB values. Thus for the printer white point, we su
ply values RGB=(1,1,1) (normalizing to scale0::1) and the
printer responds by depositing no colour for that pixel. W
find that in fact this printer displays a reasonably line
relationship between RGB and the colorimetric densi
log( ~X0= ~X), where ~X is the set of measured XYZ value
and ~X0 are those for the printer white (see Fig.1). We st
by finding a mapping from RGB to XYZ, since then w
can use a perceptual�E measure to evaluate the mappin
The more practical mapping from desired XYZ to devi
RGB will be accurate if the reverse direction is accurat

The WPPLS transform is based on performing a le
squares regression from RGB’s to XYZ’s, but constra
ing the white point to be mapped exactly. It is based o
simple Least Squares (LS) regression.

2.1. Least Squares

Suppose we calibrate with a5�5�5 colour chart, and col-
lect all� � log( ~X0= ~X) measurements into ann�3matrix
H wheren = 125, and collect all RGB values into a sim
ilar matrixQ . Here we wish to carry out a polynomia
regression fromf(RGB) toXY Z. We form an 18-vector
from each RGB triple, consisting of valuesR, G, B, R2,
G2, B2, RG, RB, GB, R3, G3, B3, R2G, R2B, RG2,
G2B, RB2, GB2. Thus matrixQ is n � 18. Then the
cience, Systems, and Applications       193
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best least squares matrixM is that for which1

H ' QM (1)

whereM is 18� 3.
The LS solution is, of course,

M = (Q TQ )�1Q TH (2)

Since we note that eq.(2) is linear, it will map zero valu
into zero. However, colorimetric densitiesH are zero at
the white point, whereas the elements ofQ are zero at
black. Therefore we alter the meaning of matrixQ so as
to mean the 18-vector composed from values(1�RGB).
Then white is zero, and is always exactly mapped using
LS transform. Note, however, that greys are not map
exactly.

The first two rows of Table 1 show results for a L
transform for this printer, expressed as CIELAB�E error
values for recovered XYZ tristimulus values, with whi
given by the paper white, for plain paper. Regression
performed on a5�5�5 color chart, and the resulting ma
trix was also applied to a separately measured achrom
scale consisting of 14 patches.

Algorithm Min Median Mean Max
LS (5x5x5) 0 6.20 6.98 24.77
LS (greys) 0 7.49 8.01 17.49
GPPLS (5x5x5) 0 6.83 7.54 24.64
GPPLS (greys) 0 4.43 6.11 13.61
GSPLS (5x5x5) 0 7.98 8.59 27.27
GSPLS (greys) 0 2.20 2.76 5.02

Table 1: Plain paper. Statistics for CIELAB�E� values com-
paring Least Squares (LS), Grey Point Preserving Least Squ
(GPPLS), and Greyspace Preserving Least Squares (GS
methods for 125 samples and 14 achromatic patches.

Errors are not insubstantial, and Fig.2(a) shows the
togram for these errors. Errors for the 14 achromatic pa
shown as vertical lines — errors for the grey scale
widely distributed.

2.2. Preserving a Grey Point: GPPLS

Although white is preserved automatically above, sinc
is represented as zero for both dependent and indepen
variables, we would like to apply a WPPLS [2, 3] approa
to such printer models. In [3] a method for constraini
the regression for higher dimensional models is presen
MatrixM is broken into two pieces, one denotedD that
takes a constraint RGB point~�C into the correct tristim-
ulus vector, and a second denotedE that preserves the
constraint that~�C is mapped exactly:

M � D + E (3)

1Errors in this printer model might be amenable to further reduct
by the technique of finding error vectors for the achromatic scale and
remapping based on these corrections with gradually less influence
function of chroma (cf. [4]); however in this work only the uncorrect
results from regression are shown.
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Now, here we are mapping an 18-vector~�C to a colori-
metric density 3-vector~�C . The problem is that we ar
representing white with both vectors equal to zero, and
WPPLS method cannot go forward. Subtracting each f
unity will not be correct either, since then the model w
have an offset. Instead, a simple approach is to insist th
distinguished point, theaverage grey, be mapped exactly
In this way both the white point as well as one grey po
will be exactly mapped.

MatrixD is a higher-dimensional extension of a dia
onal matrix relating~�C to ~�C ; it consists of the pseudoin
verse of~�C operating on~�C :

D = ~�C [(~�C)
T ~�C ]

�1(~�C)
T ;

(~�C)
TD = ~�C (4)

We can further break matrixE into a partZ that auto-
matically preserves the distinguished point and an arbit
partN ,

E = Z N (5)

Then the job of the regression is to establish the best
squaresN .

The projector

P = ~�C [(~�C)
T ~�C ]

�1(~�C)
T (6)

is the18 � 18 matrix projecting onto the 1-dimension
subspace spanned by 18-vector~�C . We need an18 � 17
matrixZ orthogonal to~�C , and for this we can take th
set of eigenvectors ofP spanning the complementary su
space.P has one eigenvalue equal to 1, and the rest 0.
eigenvectors for eigenvalues 0 make up matrixZ . Then
the solution for the best17� 3 matrixN that minimizes
least squares under the constraint is [3]

N = [Z T
Q

T
Q Z ]�1[Z T

Q
T ][H �QD ] (7)

Preserving grey, then, in this GPPLS model, takes
average (1-RGB) colour specifier, made into an 18-vec
into the average colorimetric density for the achroma
patches.2 The 3rd and 4th rows of Table 1 show the resu
for this GPPLS method. As expected, overall GPPLS
sults are slightly worse (after all, LS necessarily produ
the least squared error). However, errors for the ach
matic patches are substantially reduced, as can also be
in Fig.2(b).

3. Preserving Greyspace: GSPLS

Suppose we denote byG the set of 18-vectors forme
from (1-RGB) values for a set ofn achromatic patches
ThenG is ann � 18 matrix. We can ask the questio
Is it possible to map all such grey values to their corr
corresponding 3-vectors~�? Of course, the answer must

2Once the average grey is calculated for any particular printer, u
can be remapped so that that grey has units(1; 1; 1) (cf.[2]); then matrix
Z is fixed and need not be recalculated for each printer.
cience, Systems, and Applications       194
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negative since there are not enough dimensions in the
gression to allow for so many constraints. And in fact
more constraints the poorer overall should we expect
regression results to be, since we are pinning down m
and more of matrixM . Nevertheless we can expect
be able to approximately map a small subset of the g
patches if we are not too ambitious with respect to dim
sionn of preserved greys.

A reasonable size for our greyspace might be 5, si
we here started with a5� 5� 5 RGB cube; let us take fo
the greyspace setG five evenly-spaced grey patches n
including white. (The reason for excluding white is th
white is represented in matrixQ and in matrixH as all
zeros.) Thus we try usingn = 5 and a5� 18 matrixG .

However, we cannot expectG to have full rank, and in
fact it turns out to be3 Denote byL the set of colorimetric
densities~� corresponding to these grey patches. ThenL
is ann� 3 matrix.

If G is rankr, a Singular Value Decomposition (SVD
ofG can be written

G = U � V T (8)

whereU andV are orthogonal matrices;U isn� r and
V is r�18. Matrix� is diagonal andr� r. The Moore-
Penrose pseudoinverse ofG is denotedG +, and is given
by

G
+ = V �

�1
U

T (9)

Then we have that

G G
+ = U U

T (10)

Now note that although we must have that ther� r matrix
(U T

U ) equals ther � r identity matrixI r (which is
I 3, here), matrix(U U T ) is not the identity matrixI n

(which isI 5, here), but is only close to the identity. Ho
close depends on how rank-reduced matrixG is.

Here, we could in fact simply select 3 grey patches
of matrixG such that the subset produces a new ran
matrixG . Then we would be mapping those three gre
exactlyin the GSPLS transform developed in the next th
equations. However, that would leave part of the g
curve uncontrolled. Therefore here we keep all five patc
in matrixG and consequently map those patches not
actly but only approximately.

To carry out a GSPLS, we again form matrixD akin
to that in eq.(4), but now form it by application of the pse
doinverse of the grey space,G +, to the colorimetric den-
sities for the greys, which form matrixL :

D = G
+
L (11)

so that
G D ' L (12)

3Matrix rank can be obtained using a QR decomposition[5]. ra
r = 3. Any collection of 3 or more 18-vectors made from distinct patch
with R = G = B will have rank 3, barring noise.
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Again, we need the18�18 projectorP , which is here the
projector onto the greyspace:

P = G +G = V V T (13)

Then matrixZ is the set of(18 � r) = 15 eigenvec-
tors ofP which are orthogonal to the grey subspace. T
solution for matrixN is again given by the same equatio
(7), where nowZ is 18 � 15 andN is 15 � 3. They
combine as in eqs.(3, 5) to form an18� 3 matrixM .

The last two rows of Table 1 show the results for th
GSPLS method, for plain paper. Again, the overall perf
mance is slightly degraded, as expected, since this tr
form is not the ‘least’ possible. Nevertheless the perf
mance for this GSPLS method is not greatly changed fr
that for the GPPLS one, which preserves a single g
point. However, there is a great improvement in the
curacy of mapping the achromatic patches, as can be
in Fig.2(c).

4. Glossy Paper

Results for glossy paper are given in Table 2. As can
seen, these results are not much different than those
plain paper except that the error reduction for achrom
patches is somewhat better than for plain paper.

Algorithm Min Median Mean Max
LS (5x5x5) 0 8.36 9.08 27.00
LS (greys) 0 7.83 8.70 16.40
GPPLS (5x5x5) 0 9.33 10.50 27.42
GPPLS (greys) 0 3.83 3.78 7.19
GSPLS (5x5x5) 0 8.92 10.54 27.69
GSPLS (greys) 0 2.13 2.22 4.79

Table 2: Glossy paper. CIELAB�E� values comparing LS, GP
PLS, and GSPLS methods for 125 samples and 14 achrom
patches.

5. Conclusion

We have shown that it is possible to adapt the constra
regression method, based on mapping colour values to
timulus values, to printer models for mapping device
ordinates to colorimetric densities. Moreover, we ha
shown how to generalize the constrained regression me
so as to accurately map part or all of the achromatic cu
for a printer.

Of course, one could instead attempt to simply ca
out a standard grey balancing of RGB values. But t
is too coarse a coordinate change, even having a no
ear polynomial regression at one’s disposal following
grey balance: here a grey patch hasR = G = B so there
is only one tone curve. For plain paper, we found t
grey balancing followed by regression produced a ma
mum�E� value of 48, and the minimum�E� even for
the neutrals was 5.2: these values are much better fo
GSPLS method, as seen in Table 1.
cience, Systems, and Applications       195
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The present method involves many tradeoffs, and it
should be investigated to what degree one can increase
the rank of the accurately mapped greyspace without too
greatly decreasing overall accuracy. Also, the third-order
model employed may not be the best to use in conjunc-
tion with the constrained regression method. Finally, the
choice of just which grey patches to use should be fur-
ther explored — wehavefound that thischoicedoesmake
a difference, and possibly a substantial one. Clearly, one
should choose patches that broadly span the printer’s tone
range, but just how to do so is an open question. E.g.,
it may be best to choose greys that lie on the most linear
portionof theachromaticcurve. Theproblemissomething
likechoosing knotsin asplinecurvefit: if knotsaretoo far
from some data points unexpected variations in the curve
can result. What is required is a compromise striking the
best balanceand choicesmade in this report are likely not
yet optimal. Nevertheless, the method as presented does
what it setsout to do, which is to moreaccurately map the
greys.
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Figure 1. Colorimetric densities as a function of input RGB file
values (for fixed Blue), 850C printer, plain paper.
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Figure 2. Plain paper. Histogram of CIELAB errors for (a) LS,
(b) GPPLS, and (c) GSPLS regressions. Results for regression
matrices applied to a separately measured achromatic scale are
shown as vertical lines.
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Figure4. GPPLS: Grey Point Preserving Least Squares method.
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Figure5. GSPLS: Greyspace Preserving Least Squares method.
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Figure9. Glossy Paper. LSmethod: CIELAB errors and errors for achromatic patches.
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Figure10. Glossy Paper. GPPLSmethod: CIELAB errors and errors for achromatic patches.
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Figure11. Glossy Paper. GSPLSmethod: CIELAB errors and errors for achromatic patches.
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Figure12. Tonecurve for 850C printer. Plain paper.


