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Abstract

The spatial distributions of melanin and hemoglobin in
human skin are separated by independent component
analysis of skin color image. It is our goal to apply these
results for the estimation of preferred skin color in color
reproduction and the evaluation of a face browned by the
sun and diagnosis of a skin disease. In this paper, the
principle of independent component analysis is described
and it is also shown that the components of melanin and
hemoglobin from skin color image can be separated both
theoretically and experimentally.

Introduction

It has been considered that the skin color reproduction
is the most important problem for color reproduction of
color film and color television systems.1 With the recent
progress of various imaging systems2-5 such as multi-media,
computer graphic and telemedicine systems, the skin color
becomes increasingly important for communication, image
reproduction on hardcopy and softcopy, medical diagnosis,
cosmetic development and so on.

Human skin is the turbid media with multi-layered
structure.6 ,7 Various pigments such as melanin and
hemoglobin are contained in the media. The slight changes
of the structure and pigment construction produce rich skin
color variation.8 Therefore, it is necessary to analyze the
skin color based on the structure and pigment construction
in reproducing and diagnosing the various skin colors.

In this research,20 the spatial distributions of melanin
and hemoglobin in skin are separated by independent
component analysis of skin color image. The independent
component analysis(ICA) is a technique that extracts the
original signals from mixtures of many independent sources
without a priori information on the sources and the process
of the mixture. The ICA has been applied to the various
problems such as array processing, communication, medical
signal processing, and speech processing.9 In the field of
color image processing, Inoue et al.10 proposed a technique
to separate each pigment from compound color images.
However, they could not obtain any practical result, since
they assumed the linearity among the quantities of pigments
and observed color signals in the intensity domain. In the
intensity domain, generally, this linearity will not hold in
practical applications. We improve their technique by
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processing the color signals in the density domain, and
apply it to the skin color image.

Independent Component Analysis

The ICA applied to the color image separation10 is
described. Simplifying the description, we assume that the
media is constructed by two pigments and that it is captured
by an imaging system with two color channels. This
simplification does not prevent the generalization of the
problem except when the number of pigments is larger than
the number of channels. This is discussed later in this
section.

Let xl,m(1) and xl,m(2) denote the quantity of the two
pigments on the coordinate (l,m) in the digital color image,
a(1) and a(2) denote pure color vectors of the two pigments
per unit quantity, respectively. Inoue at al. Assumed a(1)
and a(2) are different from each other. They also assumed
the compound color vector el,m on the image coordinate (l,m)
can be calculated by the linear combination of pure color
vectors with the quantities of xl,m(1) and xl,m(2) as

l m l m, ,e x= A , (1)

where, A = [a(1), a(2)], xl,m = [xl,m(1), xl,m(2)]t.
Each element of the color vector indicates the pixel

value of each channel. Inoue et al. also assumed that the
elements l mx , ( )1  and l mx , ( )2  of the quantity vector are
mutually independent for the image coordinate (l,m) .
Figures 1(a) and (b) show the process of the mixture and an
example of probability density distribution of l mx , ( )1  and

l mx , ( )2  that are mutually independent. Figure 1(c) shows the
probability density distribution of l me , ( )1  and l me , ( )2  in the
image, which are elements of compound color vector l m,e . It
should be noted that the observed color signals l me , ( )1  and

l me , ( )2  are not mutually independent. In Fig. 1(c), pure color
vectors a( )1  and a( )2  are also shown to illustrate the
relationship among the parameters.

By applying the ICA to the compound color vectors in
the image, the relative quantity and pure color vector of
each pigment are extracted without a priori information on
the quantity and color vector under the assumption that
quantities of pigments are mutually independent for the
image coordinate. Let define the following equation using
the separating matrix H and separated vector l m,s  as shown
in Fig. 1(a).
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Figure 1. Mixture and separation of independent signals; (a) flow

of the signals, (b) an example of probability density distribution of
l mx , ( )1  and l mx , ( )2 , (c) l me , ( )1  and l me , ( )2 , and (d) l ms , ( )1  and l ms , ( )2 .

 l m l m, ,s e= H , (2)
where,

H = h h( ), ( )1 2[ ], l m
t

l m l ms s, , ,( ) ( ),s = [ ]1 2 ,

and h( )1  and h( )2  are separating vectors. By finding the
appropriate separating matrix H, we can extract the mutually
independent signals l ms , ( )1  and l ms , ( )2  from the compound
color vectors in the image. Many methods are proposed to
find the separating matrix H(for example Ref. 11-15), such
as using learning ability of artificial neural network,1 4

optimization techniques based on fixed point method.12

The extracted independent signals sl,m(1) and sl,m(2) may
correspond to xl,m(2) and xl,m(1), respectively, and it is
impossible to determine the absolute quantities xl,m(1) and
xl,m(2) without an additional assumption. Therefore the
extracted independent vector sl,m is given by

l m l m, ,s x= RΣ , (3)

where R is the permutation matrix that may substitute the
elements of the vector each other, S is the diagonal matrix to
relate the absolute quantities to relative qualities.
Substituting Eqs. (1) and (2) into Eq. (3) gives

HA Rl m l m, ,x x= Σ
. (4)

Holding Eq. (4) in the arbitrary quantity vector, the
matrix HA should be equal to the matrix RS, and the mixing
matrix A is calculated by using the inverse matrix of H as
follows:

A = H–1 R∑. (5)

Note that what we can obtain by the ICA are relative
quantities and directions of compound color vectors. In our
application of color image separation and synthesis,
however, the absolute values are not required.
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Figure 2.  Schematic model of
human skin with plane parallel
epidermal and dermal layers

Figure 3.  The analyzed skin
color image with 64 x 64
pixels
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If the number of pigments is larger than the number of
channels, it is impossible to extract the independent components
caused by reduction of the signals. On the other hand, if the
number of pigments is smaller than the number of channels,
it is possible to make the number of channels equal to the
number of pigments by using the principal component
analysis.14,16 This technique is also used in our analysis.

Skin Color Model

Schematic model of human skin is shown in Fig. 2 with
plane parallel epidermal and dermal layers. The epidermal
and dermal layers are the turbid media. Various pigments
such as melanin, hemoglobin, bilirubin, and β-carotene are
contained in the layers, especially melanin and hemoglobin
are dominantly contained in the epidermal and dermal layer,
respectively.

Figure 3 shows skin color image with 64 × 64 pixels
used for the ICA. The image is extracted from the forehead
of the facial image with 300 × 450 pixels taken by HDTV
camera(Nikon HQ1500C) with 1920 × 1035 pixels. Each
pixel of color images has three channels; red, green and
blue. Let l mr , , l mg , , l mb ,  be the pixel values in red, green and
blue channels of the skin color image on the image
coordinate (l,m), respectively.

Analyzing the above skin color, we made four
assumptions on skin color. First, Lambert-Beer law or
modified Lambert-Beer law17 holds in the reflected light
among the quantities and observed color signals. Second,
spectral distribution of the skin is not abrupt in the sensitive
spectral range of each channel in the imaging system. Third,
the spatial variations of color in the skin are caused by two
pigments; melanin and hemoglobin. Fourth, these quantities
are mutually independent spatially.

The first assumption assures the linearity among the
observed color signals and pure color signals of pigments in
the spectral density domain. In the optical density domain of
three channels; − log( ),l mr , − log( ),l mg  and − log( ),l mb , the
linearity is assured by including the second assumption. On
the basis of the linearity and the third assumption, the color
in skin image is modeled as Fig. 4 in the optical density
domain of three channels. It is seen that the three densities
of skin color are distributed on the two dimensional plane
spanned by pure color vectors of melanin and hemoglobin.
Denote by l m,c  color density vector on image coordinate
(l,m) as
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l m

t

l m l m l mr g b, , , ,log( ), log( ), log( )c = − − −[ ] , (6)

where [•]t represents transposition. According to the skin
color model shown in Fig. 4, the color density vector of skin
can be expressed by

l m l m, , ( )c q c= +C 3 , (7)

where

C = [ ]c c( ), ( )1 2 , l m

t
l m l mq q, , ,[ ( ), ( )]q = 1 2 ,

and c( )1  and c( )2  are pure density vectors of hemoglobin and
melanin (or melanin and hemoglobin), l mq , ( )1  and l mq , ( )2  are
relative quantities of the pigments respectively, c( )3  is
spatially stationary vector caused by other pigments and
skin structure. The vectors c( )1  and c( )2  are normalized as
c c( ) ( )1 2 1= = , where ⋅  is the Euclidean norm.

− log(r )

− log(g)

−log(b)

c(3) c(2)

c(1) p(1)

p(2)

Skin color distribution

Figure 4. Skin color model in the optical density domain of three
channels

It is easily understood that the ICA described in the
previous section can be applied in the two dimensional
plane spanned by c( )1  and c( )2  to estimate the quantity
vector l m,q  from color density vectors l m,c . Principal
component analysis(PCA) is used to extract the two-
dimensional plane. The values of three channels can be
adequately described by using the two principal components
with the accuracy of 99.3%. Let denote the first, second and
third principal component vectors as p( )1 , p( )2  and p( )3 ,
respectively. It is noted that p( )1 , p( )2  will span the two
dimensional space spanned by c( )1  and c( )2 .

Here define a projection matrix PPt = [p(1), p(2)] [p(1),
p(2)]t onto the two dimensional space spanned by c( )1  and
c( )2 . Based on the projection, the color density vector l m,c
can be divided into two components as follows:

l m l m, , ( ) ( )c q c c= +{ } +P P C (I-P P )t t3 3
, (8)

where matrix I  denotes an identity matrix. The first term
indicates the component in the two dimensional subspace
spanned by c( )1  and c( )2  or p( )1  and p( )2 . The second term
indicates the component in the one dimensional subspace
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which is spanned by p( )3 .

Skin Color Image Separation

The skin color model proposed in the previous section
is used to extract the unknown color density matrix C  and
unknown relative quantity vectors l m,q  as follows.

Let us define the score vector l m,w  in the first term of
Eq. (8) as

l m l m, ,w q= ′tP C (9)

where, l m l m, , ( ) ( )′ = + −q q c1
3

t tP C P .

Making the task of ICA easier,14,16 the elements in
score vector l m,w  were made zero mean by subtracting the
mean vector w , and unit variance by multiplying the
inverse square root of the 2 × 2 diagonal matrix
D diag= [ , ]( ) ( )λ λ1 2 , where λ ( )1  and λ ( )2  denote the
eigenvalues for the first and second principal components
respectively. The whitened vector denoted by l m,e  is written
as

l m l m, ,e x= -1/2 tD P C , (10)

where,  l ml m ,, )x q w= ′ − −1t(P C .

Here, we define A = -1/2 tD P C , then we get Eq. (11) that
is as same as Eq. (1).

l m l m, ,e x= A          (11)

The separation matrix H  is obtained by the ICA for the
normalized vectors l m,e , and the mixing matrix is calculated
by Eq. (5). Substituting the A = D–1/2 Pt C into the Eq. (5)
and solving for the color matrix C, the estimated matrix C̃
of pure color densities is calculated as,

˜ )C = -1-1/2 t -1(D P H RΣ . (12)

The diagonal matrix Σ  was decided to normalize the matrix
C̃  as c c( ) ( )1 2 1= = , permutation matrix R was an identity
matrix in this paper.

Each element of separation matrix H was obtained by
minimizing the Burel's independence evaluation value11 for
the elements of vector sl,m. The independence evaluation
value ranges from 0 to 1, and if the value is 0, the signals
are mutually independent. The minimization is performed
by quasi-Newton implementation using the MATLAB tool
box.18 The independence evaluation values for the observed
signals l me , ( )1 , l me , ( )2  and resultant signals l ms , ( )1 , l ms , ( )2

were 0.2414 and 0.0081, respectively. We can conclude that
l ms , ( )1  and l ms , ( )2  are fairly independent of each other,

therefore melanin and hemoglobin were distributed
independently in the skin color image.
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(a)  (b)

igure 5. Separated two independent components of the skin color

mage; (a) first and (b) second independent components. The
ynthesis parameters are set as (a) K = diag[ , ]1 0  and j = 0 , (b)
K = diag[ , ]0 1  and j = 0 .

Let define C̃+  as the Moore-Penrose's generalized
nverse matrix of C̃ , and b  as min( ),

+C l mc  assuming that
he smallest value of each element in l m,q  in skin image is
ero. The color separation and synthesis equation is written
y

l m l m l mK j j, , ,˜ { ˜ }′ = −( ) + +c c b b cC C (I-P P )+ t

,        (13)

here c′ l,m is the synthesized color, K  is the diagonal matrix
o change the quantities of pigments l m,q , j  is the value to
hange quantities of stationary color vector c( )3 . We call the
K  and j  synthesis parameters.

Figures 5 (a) and (b) show the separated two
ndependent components; first and second independent
omponents, respectively. We set the synthesis parameters
s K = diag[ , ]1 0  and j = 0  in Fig. 5(a), K = diag[ , ]0 1  and
j = 0  in Fig. 5(b). It is considered that the first and second
ndependent components are caused by hemoglobin and
elanin, respectively, since the pimples are appeared in the

irst independent component and not appeared in the second
ndependent component.

Conclusion

The skin color image was separated into two images by
ndependent component analysis in optical density domain
f three color channels. We believe that the images
orrespond to distributions of the melanin and hemoglobin,
espectively, because the result of separation agreed well
ith the physiological knowledge. The separated

omponents can be synthesized to simulate the various
acial color images by changing the quantities of the
eparated two pigments.
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