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Abstract

Research has been initiated to determine a set of six
basis colorants which are the best representation of artwork
such as paintings. That is, their spectral information can be
accurately reconstructed by linear combinations of the six
estimated colorants. Since each painting is possibly created
by different colorants, the six estimated colorants are image
dependent. The clue leading to the six estimated colorants is
the six eigenvectors determined from the corresponding
spectral measurements. The relationship between the six
eigenvectors and estimated colorants is merely the linear
transformation (or geometrical rotation). Based on this faith,
a constrained-rotation engine using MATLAB was devised to
perform the transformation from the eigenvectors to a set of
all-positive vectors as the estimated colorants. Once a set of
reasonable colorants is uncovered, this set of colorants can
be used to synthesize the original artwork with the least
metameric effect between the reproductions and originals.

Introduction

A research and development program has been initiated
in the Munsell Color Science Laboratory at Rochester
Institute of Technology to develop a spectral-based color
reproduction system. Research has included multi-spectral
capture systems1-4 and spectral-based printing algorithms.5-7

The current research is concerned with bridging these
analysis and synthesis stages of color reproduction.

Conventional four-color printing systems are limited by
sufficient degrees of freedom for tuning the visible region of
the spectrum; as a consequence, they are limited, at best, to
metameric reproductions. That is, color matches defined for a
single observer and illuminant (usually CIE illuminant D50
and the 1931 standard observer) are often unstable when
viewed under other illuminants or by other observers. For
critical color-matching applications, such as catalog sales
and artwork reproductions, the results are usually
disappointing due to typical uncontrolled lighting and
viewing. Furthermore, the existing multiple-ink printing
systems,8 which all focus on expanding color gamut, do not
alleviate metamerism since their separation algorithms are
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trichromatic in nature. The advantage of more degrees of
freedom is not exploited.

The goal of the current research is to minimize
metamerism between originals and their corresponding
reproductions, thus creating spectral matches. This research
extends earlier research performed by Kohler and Berns.9

Accomplishing this goal requires first estimating the
spectral properties of the colorants used to create the original
object or set of objects. After the possible colorants are
statistically uncovered, they are correlated to an existing ink
database for determining an optimal ink set. These two
processes comprise the analysis stage of the current research.
This contribution is concerned with the first process. (The
second process, hopefully, will be presented at CIC’99.)

Approximately Linear Colorant
Mixing Space

Kubelka-Munk turbid media theory10-11 is used as the
first-order approximation transforming spectral reflectance
factor, Rλ, into an approximately linear space, defined as
(K/S)λ, where K represents absorption, S represents
scattering, and λ  is the wavelength within the visible
spectrum. The considerable literature and experiential
evidence in industries including paints, plastics, and textiles
validates the use of (K/S)λ rather than Rλ in these
computations. (A rigorous proof is beyond the scope of this
article). The opaque form is shown in Eqs. (1) and (2).

R K S K S K Sλ λ λ λ, ( / ) ( / ) ( / )∞ = + − +1 22 , (1)

( / ) ( ) /, ,K S R Rλ λ λ= − ∞ ∞1 22 ,                (2)

where R∞, λ is the spectral reflectance factor of an opaque
sample. The transformations for a transparent colorant layer
in optical contact with an opaque scattering support is
shown in Eqs. (3) and (4).

R R eg
K X

λ λ
λ= −

,
2 , (3)

K
R

R g
λ

λ

λ
= −









0 5. ln

,

, (4)
cience, Systems, and Applications       106



Copyright 1998, IS&T
where Rλ , g is the spectral reflectance factor of an opaque
support and X is the thickness of the colorant layer. For
simplicity, (K/S)λ as well as Kλ are denoted as Φλ for the
remainder of this article. Thus, the colorant mixing can be
described by linear combinations of individual colorants
represented in Φλ space, i.e.,

Φλ λφ, ,mix i
i

p

ic=
=
∑

1
,       (5)

where ci represents the concentration of a basis colorant and
φλ , i is a basis colorant vector normalized to its unit
concentration.

As an example, a still life painting of a floral
arrangement was produced with six independent acrylic
paints. Each paint was applied on a paper stock at a
thickness achieving opacity and measured spectrally using a
Gretag SPM 60 spectrophotometer. Each reflectance vector
had thirty-one components: 400 nm - 700 nm at 10 nm
bandwidths and intervals. These reflectance vectors were
transformed to Φλ. Ideally, one needs thirty-one “spectral
colorants” with 10 nm bandwidth absorption and scattering
properties at the sampled wavelengths in order to reconstruct
the measured sample spectra. Realistically, colorants do not
have such narrow band properties. Furthermore, reproducing
a color by mixing thirty-one colorants is highly impractical
for any real coloration process. Fortunately, chromatic
stimuli are not originally created by such spectral colorants;
hence, their Φλ do not span the entire thirty-one dimensional
Φλ space. Instead, they are distributed in a lower dimensional
Φλ subspace. If an original painting was only painted by, for
example, six independent colorants, then, ideally, the
measured set of Φλ should be distributed only in a six-
dimensional subspace of Φλ space.

Principal Component Analysis

Principal component analysis (PCA) can provide a
measure to statistically determine the dimensionality of the
sample population.12 Various research in color science
applications had shown its prominent success and
progress.13-15 The underlying assumption is that the set of
sampled Φλ vectors are multivariate-normally distributed in a
thirty-one dimensional Φλ space. The in-depth discussions
for the importance of the multivariate normality of the
sample space which impacts the accuracy of PCA are
currently under study by the present authors and, hopefully,
will be published in the near future.16

The linear combinations of the first p eigenvectors
should describe the entire set of Φλ if the original was
created by p colorants, i.e.,

Φλ λ, ,sample i i
i

p

b e=
=
∑

1
,

(6)

where eλ, i is the ith eigenvector and bi is the corresponding
coefficient to reconstruct a sample. Rewriting equation (6) in
matrix form:

Φ = EB. ( 7 )
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E is the matrix of the first six eigenvectors and B is the
coefficient matrix to reconstruct the sample population, Φ.
Figure 1 shows the first six eigenvectors which were
obtained from the still life painting explaining the most
sample variations (99.98%) in Φλ space.
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Figure 1. The six eigenvectors obtained from the still life
painting.

Colorant Estimation

As shown in Figure 1, the thirty-one components of the
eigenvectors are often bipolar; consequently, they are not a
set of physical colorants. Furthermore, their corresponding
coefficient vectors are also bipolar not representing physical
concentrations. Real colorants should have all-positive Φλ as
their vector components, and the corresponding concen-
trations should be all-positive. Since an original was created
by mixing a set of existing physical colorants at different
concentrations and the color mixing operation is mathe-
matically described by Eq. (5), the sampled Φ are distributed
in an all-positive space. Rewriting Eq. (5) in matrix form:

Φ = φC,        ( 8 )

where φ is the matrix of the basis colorants and C  is the
concentration matrix to reconstruct the sample population,
Φ. Notice that Eq. (8) can be equated with Eq. (7) in order to
obtain the relationship between the eigenvectors and the φλ
of the basis colorants used for creating the original painting.
Based on this vision, the relationship between the
eigenvectors and the physical basis colorants is merely a
linear transformation, or a geometric rotation. Since

Φ = EB = φC,                (9)

this implies that

φ = EBC– = EM,                 (10)
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where C- stands for the pseudo-inverse of the concentration
matrix and M is the representation of the matrix product of
B and C-. The linear transformation from eigenvectors to
physical basis colorants should result in two important
properties. First, the rotated eigenvectors should be a set of
all-positive vectors. Second, the concentration matrix should
have all non-negative entries. These two constraints should
result in colorant spectra that are very similar or linearly
related to the actual colorants.

This constrained rotation was previously performed by
Ohta.17 His research goal was to estimate the spectral density
curves of an unknown dye set for photographic materials
using only the spectra of color mixtures such as ANSI IT8
targets. A Monte Carlo method was also used to help
identify the most likely dye set. It was a three dimensional
vector transformation. This research extends the challenge to
six dimensions.

In the current analysis, a constrained-rotation engine
using MATLAB as the calculation platform was devised to
solve the problem. Since the ultimate goal of this research
is to identify a set of printing inks that minimize
metamerism between a set of objects and their printed
reproduction, the dimensionality is limited to six,
corresponding to six printing stations. If the dimensionality
of the original Φ is greater than six, or if there is
appreciable spectral measurement error, residual errors will
result. Hence, goodness metrics are required. The spectral
accuracy was quantified by an index of metamerism that
consists of both a parameric correction18 for D50 and the use
of CIE9419 under illuminant A. The colorimetric accuracy is
calculated using CIE94 under D50 for the 1931 observer.

Justification of Eigenvector
Reconstruction Without Sample Mean

In practice, the measured samples often reveal more than
p dimensions due to measurement noise and limitations in
the validity of the Kubelka-Munk transformations. Given
the p limited dimensions for spectral reconstruction, one
should employ Eq. (6) together with the sample mean for
better accuracy.12 That is,

Φ Φλ λ λ, , ,sample sample mean= +
=
∑b ei i
i

p

1 .         (11)

The Existence of a sample mean for spectral
reconstruction poses several difficulties for this research.
First, the sample mean is only a statistical result which
specifies the average Φλ behavior for the set of samples. The
sample mean does not represent any physical colorant.
Second, in Eq. (11), the sample mean is acting as an offset
vector which impedes the equality relationship in Eq. (9).
Since the eigenvectors are the only clue leading to a set of
possible colorants, the sample mean must be excluded for
maintaining the rotation relationship between eigenvectors
and the set of possible colorants which is specified by Eq.
(11). Finally, the confidence for excluding the sample mean
is that if the dimensionality of sample population is
approximately the constrained number of dimensions, then
the sample mean approximately resides in the reconstructed
sample population. That is, the sample mean can be
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approximately expressed as a linear combination by the
limited number of eigenvectros. Henceforth, the sample
mean in Eq. (11) can be excluded without significant error,
i.e., Eq. (6) will be used.

Testing the Constrained-Rotation Engine
by a Virtual Sample population

The constrained-rotation engine was first tested for a
virtual sample population with three thousand random
mixtures created by linear combinations of the six acrylic-
paint spectra in Φλ space. These six spectra, plotted in
Figure 2, were carefully chosen and verified to be
independent colorant vectors, i.e., no one colorant vector can
be expressed as the linear combination of any other five
colorant vectors.
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Figure 2. The six acrylic-paints used for generating for the
virtual sample population.

Hence, the virtual sample population is ensured to be
six dimensional. The corresponding concentration vectors
were randomly generated from uniform distributions. Thus,
the resulted population of linear combinations of six
uniform distributions is approximately multivariate
normally distributed (convolution of six uniform
distributions is approximately normal).

Given that real sample populations can be confounded
by processes and measurements, the idea of using the virtual
sample population to test the constrained-rotation engine is
to provide a noise free sample population. This ensures that
the rotated eigenvectors with all-positive vector components
as the estimated colorant spectra should be identical or
linearly related to the six acrylic-paint spectra if the proposed
vector transformation theory expressed as Eq. (10) is valid.

Six-eigenvector reconstruction without a sample mean
vector, based on Eq. (6), yielded approximately zero spectral
errors, hence, zero colorimetric errors since full dimen-
sionalty was employed. Then, an arbitrary set of six colorant
vectors were used as the initial values for the constrained-
rotation engine. The resultant all-positive eigenvectors as
the set of estimated colorant vectors are identical to the
original six acrylic-paint spectra. In addition, another set of
six block spectra evenly spaced within 400 nm to 700 nm
representing an initial colorant vectors was utilized and the
resulted estimated colorant vectors were also identical to the
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six acrylic-paint spectra. This is surprising since the vector
transformation can not be unique; multiple solutions should
exist. Whereas, those solution are linearly related with each
other since they all are the linear transformations of the six
eigenvectors. Thus, the first test shows that the constrained-
rotation engine is able to converge to an all-positive
representation of the eigenvectors.

Colorant Estimation for the
Kodak Q60C Target

The second verification was performed on the Kodak
Q60C, a photographic reflection target that is a precursor to
ANSI IT8 target. Three eigenvector reconstruction should
yield low spectral and colorimetric errors corresponding to
the fact that it is manufactured by three dyes. Kulbeka-Munk
transformation for transparent material was used to transform
reflectance factor to absorption. The spectral and colorimetric
accuracy, based on the three-eigenvector reconstruction, is
shown in Table I. Ideally, this is a three dimensional
problem. Whereas, the spectral and colorimetric accuracy is
confounded by the manufacturing, processing and measuring
noise, and the model accuracy limitations of Kulbeka-Munk
theory.

Table I. The Spectral and Colorimetric Accuracy
of the Three-Eigenvector Reconstruction for the
Kodak Q60C.

CIE94 Metameric
Index

Mean 0.48 0.19

Std Deviation 0.2 0.17

Maximum 1.12 1

Minimum 0 0

Uncovering the set of all-positive eigenvectors as the
estimated dye spectra of the Q60C was preceded by using the
first eigenvectors of cyan, magenta, and yellow ramps of the
Q60C as the initial colorant vectors. The first eigenvector of
each ramp, denoted as local eigenvector, is the first
statistical estimation of the real dye spectrum.20 By this
approach, the advantage is to get a close solution and help
expedite the rotation process. The estimated dye spectra
(thick lines) and the local eigenvectors (dotted lines) are
plotted in Figure 3. Since the all-positive eigenvectors
representing the estimated dyes are an exact linear transfor-
mation of the first three eigenvectors, denoted as global
eigenvectors determined from the Kodak Q60C target, the
spectral and colorimetric performance of estimated dyes is
the same as that of global eigenvectors.

It was found that the local eigenvectors were not the
exact transformation of the global eigenvectors. The spectral
reconstructibility by local eigenvectors was worse than that
of the estimated dyes as expected. Furthermore, the broader
The Sixth Color Imaging Conference: Co
absorption bandwidths of the local eigenvectors symbolize
the possible impurity contamination during the manu-
facturing, processing and measuring. On the contrary, the
all-positive eigenvectors as the estimated dye spectra
showing narrower absorption bandwidths may be close to
the real dye spectra based on the support of low spectral and
colorimetric errors.
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Figure 3. The all-positive eigenvectors as the estimated dye
spectra (thick line) and the local eigenvectors (dotted lines).

The testing for the proposed colorant-estimation engine
favors the sense of reverse engineering, i.e., uncovering the
spectral structures of real colorants. However, for the current
research applications, it needs only one reasonable set of
colorant spectra which can be used to search through the
existing ink database or for a colorant chemist to synthesize
the exact inks. Once one exact or similar set of inks is
selected, spectral-based printing process can utilize the
selected ink set to fulfill the least metameric reproduction.
Hence, it is not critical for the proposed colorant estimation
engine to converge to the very real colorant spectra which
were used to manufacture the colored objects.

Table II. The Spectral and Colorimetric Accur-
acy of the Six-Eigenvector Reconstruction for
the Still Life Painting.

CIE94 Metameric
Index

Mean 0.21 0.18

Std Deviation 0.14 0.16

Maximum 0.75 0.95

Minimum 0.02 0.01

Colorant Estimation for the
Still Life Painting

The final verification for the constrained-rotation engine
was performed by spectral measurements of the still life
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painting mentioned previously. The painting was painted by
six independent acrylic-paints whose Φλ spectra are plotted
in Figure 2. One hundred and twenty-six samples were
obtained to represent the entire Φλ space of the painting
whose six eigenvectors plotted in Figure 1 explaining
99.98% of total variation indicated that this sample
population is approximately six dimensional. The spectral
and colorimetric accuracy of the six-eigenvector reconstruc-
tion is specified in Table II.

Initially, the colorant estimation was intended to
directly rotate the six eigenvectors to one set of all-positive
representations. The resultant colorant spectra are plotted in
Figure 4 and show that there is a colorant (thin dotted line)
with various absorption bands across the visible spectral
region and the reasonable appearance of the rest of the five
colorants. Several sets of colorant vectors were used as the
initial estimation for the constrained-rotation engine. The
resulting sets of estimated colorants all possessed the similar
spectral properties. These initial attempts did not reveal the
existence of a neutral colorant judged by the lack of a flat
spectrum.
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Figure 4. The six all-positive eigenvectors as the estimated
colorants for the still life painting.

Table III. The Spectral and Colorimetric Accur-
acy of the Six Estimated Colorants for the S t i l l
Life Painting.

CIE94 Metameric
Index

Mean 0.22 0.21

Std Deviation 0.16 0.18

Maximum 0.92 1.01

Minimum 0.02 0.01
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Figure 5. The estimated colorants (solid lines) and the original
colorants (astroidal lines) used for the still life painting.

The neutral colorant with an approximately flat
spectrum can be approximated by the linear combination of
the rest of the five estimated colorants. The lack of a neutral
colorant indicated that the rest of the five estimated colorants
did not explain sufficient spectral variation. Since the current
research aims to uncover one neutral and five chromatic
colorants for printing processes, the approach has to
constrain the assumption of the existence of the neutral
colorant. Hence, the colorant estimation for the still life
painting was proceeded by: first, estimate the neutral
colorant using linear regression to fit the perfect flat
spectrum by the six eigenvectors. Second, rotate the most
significant five eigenvectors to their all-positive
representations. The resulted estimated colorants should
explain a higher degree of spectral variation once the neutral
dimension is constrained. The spectral and colorimetric
accuracy of the resulted six estimated colorants is shown in
Table III and their spectral curves (solid lines) are
simultaneously plotted with the six original colorants
(astroidal lines) used for the still life painting in Figure 5.

Evaluation and Analysis

The constrained-rotation of the six eigenvectors obtained
from the still life painting yielded a reasonable set of
estimated colorants. Judging from them, most colorants
have similar spectral properties to the original which were
utilized to create the still life painting. Whereas, the spectral
property similar to green is absent in this set of estimated
colorants. Instead, the constrained-rotation process gave out
a spectrum equivalent to a yellow colorant. This can be
attributed to the sampling error due the usage of larger
aperture size of spectrophotometer which violates the
additive assumption in Φλ space.

Consider the field of view of a spectrophotometer
shown in Figure 6. Once the spectrophotometer samples at
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a spot where two or more contiguous colors are within its
field of  view, the reading is equivalent to the additive
result of the spectral reflectance factors confined by the spot
whose spectral reflectance is contributed by that of the two
or more colors.

Figure 6: The possible field of view of a spectrophotometer.

Furthermore, the additive operation in reflectance space
undergoing a nonlinear transformation such as Eqs. (2) and
(4) results in the additive operation undefined in Φλ space.
As a consequence, the behavior of samples in Φλ space are
not predictable by the linear model of Eq. (5). This type of
sampling error can be reduced when the spectral reflectance
factor of a color object is estimated by a high resolution
CCD camera with very narrow field of views for each pixel.

The under-sampling of green and over-sampling of
yellow-orange color are the other source of errors which
cause the estimated colorants do not agree with the original
colorant.  Once the sample gamut is approximately
uniform, i.e., each color has approximately equal
probability of occurrence in the sample population, this
type of error is minimized.

Since the sample gamut of the still life was carefully
controlled to be as uniform as possible,  the lack of green
colorant is mainly caused by the violation of the additive
assumption in Φλ space due to the large field of view of the
spectrophotometer.

Conclusions

An algorithm was developed for the colorant
estimation of  original objects through vector analysis and
principal component analysis.  The relationship between
basis colorants and eigenvectors is elucidated by
performing a constrained linear transformation. Since the
basis colorants used for creating original objects can be
statistically uncovered with sufficient accuracy, the color
reproduction at the synthesis stage gains the maximum
capability to spectrally reconstruct a sample from the
original.  Therefore, the metamerism between the
reproduction and original is minimized.
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