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Abstract

To accurately predict the response of colour devi
such as digital cameras to spectral stimuli their spec
sensitivities need to be known. In this paper we pres
a simple, flexible method for characterising such devic
based on a single image of a Macbeth Color Checker Ch

We begin by showing that device RGBs are linea
related to the Macbeth reflectances and that this linea
lationship is defined by the spectral sensitivities of the
vice. It follows then that it should be possible to solve
these sensitivities by linear regression. However, this s
ple idea does not work well in practice - recovered sens
ities are very different from the actual device sensitivitie

The simple regression fails because the Macbeth
flectance set has limited dimensionality and so the reg
sion is highly sensitive to image noise. To overcome t
problem we incorporate a number of natural constrai
positivity, modality, and band-limitedness into the regr
sion formulation. Each constraint can be written as a lin
inequality and so solving for device sensitivities by th
constrained regression is a quadratic programming p
lem. Posing the problem in this form, we can search
the sensors which best fit the data, quickly and efficien
by trying different combinations of the linear constraint

The results of performing this constrained regress
on a number of colour devices are presented here. In
cases our new technique recovers sensors which are
close to the actual device sensitivities and we are confi
that these results will extrapolate to other colour device

1. Introduction

The use of colour devices such as digital cameras and s
ners is becoming increasingly widespread. Good co
correction of images from these devices requires that
are able to obtain colorimetric data from them. That is,
need to be able to relate the device RGB values to X
tristimulus values. This can be achieved in a numbe
ways. For example, given a set of targets we can m
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from camera RGBs to XYZs using interpolation and loo
up tables12;6;7 A simpler approach is to transform RG
values to XYZ values using a linear transform i.e. a sin
3� 3 matrix. Such linear transforms can be determined
making certain assumptions about the spectral correla
statistics of the scene. Previous authors2 have determined
a3�3matrix using only the assumption that all colour s
nals are equally likely - the so called maximum ignora
assumption. In more recent work1 they added the furthe
constraint that the white-point be preserved under the m
ping. The ease with which this matrix can be calcula
and the fact that its visual results compare favourably w
other methods based on surface reflectance statistics5 has
led to its proposal4 as a standard method for transformi
from device co-ordinates to tristimulus co-ordinates.

Unfortunately, determining the maximum ignorance
ear transform for a device, is not possible unless its spe
sensitivities are known. Knowledge of a device’s spec
sensitivity curves is important in other applications to
For example, to obtain good colour reproduction of ima
from a digital camera the scene illuminant must be kno
Practical algorithms to estimate the scene illuminant fr
the image data have been developed3 but they can only be
applied when the camera sensitivities are known. Sinc
general manufacturers do not make the spectral chara
istics of their sensors available, the user must charact
their own device.

The standard technique for measuring the spectral
sitivities of a colour device requires the user to record
device’s response to monochromatic light across the
ble spectrum. This is a difficult task since it involves us
a monochromator (an expensive piece of physics eq
ment) or a series of very narrow-band17;18 interference fil-
ters (which too are expensive, and their use is tedio
These difficulties make measuring the spectral sensit
curves impractical for most users.

In this paper we present an alternative approach to
vice characterisation, formulating the problem as one
constrained regression. Rather than relying on making
curate measurements of the device sensitivities, our
Science, Systems, and Applications       90
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proach requires only, that we can record the respons
the device to a number of objects of known surface
flectance (for example a Macbeth Color Checker Ch
under known illumination conditions.

As we will show, the responses of a device (typically
set of RGB values) are linearly related to the spectral s
face reflectance data, and furthermore this relationsh
defined by the sensor response functions. It follows t
we should be able to solve for the sensors by a simple
ear regression. However a a regression of this kind lead
very poor estimates of the sensors. This poor performa
is due to the limited dimensionality of surface reflectan
functions, which leads to sensor estimates which are hig
sensitive to noise in the device responses. To overcome
problem we incorporate into the problem formulation
number of natural constraints; sensitivity functions sho
be positive, have limited modality, and be band-limite
We then solve for the sensor functions by a constrai
regression. The fact that all the constraints are linear
lows us to pose the regression in a quadratic programm
form8, easily solvable using a package such as MATLA

In Section 2 of this paper we state the problem of s
sor estimation as a linear regression problem and s
that an unconstrained regression leads to poor senso
timates. We present our method for constraining the
gression and its formulation as a quadratic programm
problem in Section 3 and relate this new method to p
viously published work17;11. In Section 4 we present th
results of using this new method to characterise a num
of colour devices. The results show that in all cases
recovered sensors are very close to the actual (meas
sensors. Finally we summarise this work and draw so
conclusions from it in Section 5.

2. Statement of the Problem

For the purposes of this paper we assume that the ou
of our device is a three-band digital image. At each pix
j the value recorded in theith band of the image is give
by the equation:

rji =

Z
!

E(�)Sj(�)Ri(�)d�; i = 1; 2; 3 (1)

whereE(�) is the spectral power distribution of the sce
illuminant,Sj(�) is the surface reflectance imaged at pix
j,Ri(�) is the spectral sensitivity of theith sensor, and the
integral is taken over the visible spectrum!. For practical
purposes it is sufficient to approximate the various con
uous spectra by their value at a number of discrete s
ple points; typically 31 sample points are used, betw
400nm and 700nm at 10nm intervals. Adopting these
proximations the integral is replaced by a summation
Equation 1 becomes:
The Sixth Color Imaging Conference: Color 
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rji =

31X
k=1

E(�k)Sj(�k)Ri(�k); i = 1; 2; 3 (2)

Or, re-writing Equation 2 in vector form:

rji = ctjRi; i = 1; 2; 3 (3)

wherecjk = E(�k)Sj(�k) andRik = Ri(�k). Now sup-
pose we capture an image of a number of objects of kn
reflectance under known illumination conditions; here
take as our objects the 24 patches of the Macbeth C
Checker Chart which represent a range of naturally
curring reflectance spectra. Averaging the recorded se
values for each patch results in 24 equations of the form
Equation 3. Placing the 24 sensor values of theith sensor
in a vectorri, we can combine these 24 equations int
single matrix equation:

ri = CRi; i = 1; 2; 3 (4)

where thejth element ofri is rji and thejth row ofC is
cj . Equation 4 represents a system of 24 equations i
unknowns -R(�k); (k = 1; : : : 31) an under-determine
system. Although we cannot find an exact solution to
set of equations we can find a non-unique least-squ
approximation toR, such that this approximation̂R min-
imises the residual squared error:

kCR̂i � rik
2 (5)

The bottom graph of Figure 1 shows the result of rec
ering the sensors (top of Figure 1) of a typical 3-bandrgb
digital camera using a least-squares regression; clea
very poor estimate of the camera sensitivities. The rea
that an unconstrained regression performs so badly is
though the surface spectral reflectance functions are re
sented by 31 dimensional vectors, the true dimension
of these functions is much less (studies suggest tha
24 reflectance functions of the Macbeth chart can be a
rately represented by as few as 3 basis functions14. More-
over adding more reflectances or using a different se
surface reflectance functions is unlikely to improve the
uation since it has been demonstrated9;13 that naturally oc-
curring surface reflectance functions can be approxim
by between 6 and 9 basis functions. This reduced dim
sionality results in an estimate ofRi which is highly sen-
sitive to noise in the measured sensor values.

3. Constraining the Problem

The spectral sensitivity curves of the digital camera wh
are shown in Figure 1 exhibit a number of features wh
are likely to be common to the majority of device senso
Science, Systems, and Applications       91
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Figure 1: The sensor curves of a typical 3-band digital came
(top) and the sensors obtained by a simple linear regression (
tom).

First, the curves are everywhere positive; as all sensors
be since a device cannot have a negative response to a
ulus. Second, the curves in Figure 1 are uni-modal — t
have a single peak. While we cannot be sure that all
sor curves will have only a single peak it is likely that t
number of peaks will be relatively few – allowing curv
to be bi-modal or tri-modal will cover the majority of se
sor curves. Finally the curves are band-limited; a prop
shared by all device sensors. We propose that by inco
rating these natural constraints into the regression for
lation, we can constrain the problem enough to overco
the noise sensitivity problem and thus obtain accurate
mates of the sensors.

A number of other authors have taken a similar
proach to sensor estimation. For example, in their work
scanner characterisation, Sharma and Trussel11 imposed
the constraints of positivity and smoothness (by bound
a discrete estimation of the second derivative), and
bounded the maximum, and sum of squares error. N
ing that all these constraints are convex, they formula
the regression problem in a set-theoretic form and used
mathematical technique of Projections Onto Convex S
(POCS) to solve for the sensors. However POCS is
iterative method, and although it is guaranteed to giv
solution that satisfies all the constraints (provided the
lution set is non-empty) this solution is not optimal. F
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t-

ill
im-
y
n-

y
o-
u-
e
ti-

-
n

g
o
t-
d
he
ts
n
a
-

thermore the solution returned by POCS is quite sensi
to the choice of the initial iteration point. In later wor
Barnard16 used essentially the same constraints to so
for a set of camera sensors. However he reformulated
problem as one of minimising the sum of squares rela
error subject to the linear constraints, and solved the
gression using a standard numerical solution method.

Importantly, as well as being intuitive, all of the con
straints we have introduced here can also be written as
ple linear inequalities. This linearity allows us to form
late the regression as a quadratic programming8 problem;
that is we can pose the problem as one of minimising
quadratic objective function:

kCRi � rik
2

subject to a set of linear constraints:

a1;1Ri(�1)+ : : : +a1;31Ri(�31) � b1
a2;1Ri(�1)+ : : : +a2;31Ri(�31) � b2

... : : :
...

am;1Ri(�1)+ : : : +am;31Ri(�31) � bm

(6)

where theai;j ; bi will be determined by the nature of th
constraint which is being applied. Equally we could choo
to minimise the sum of squares relative error:

24X
j=1

CjRi � rji
rji

!
(7)

as Barnard16 suggests. Quadratic programming is exac
the same as linear programming except for the quadr
objective function. Like linear programming there is a
ways a unique global optimum and it is always foun
When the regression is posed in this form it can easily
solved using standard mathematical software (MATLA
for example), and moreover the simplicity of the meth
allows one to search many different combinations of c
straints to search for the best estimates of the sensors
now consider each of the three constraints in more de
showing that they can be formulated as sets of linear
equalities, and we give some guidelines as to their use

Positivity
The constraint that our sensors are positive is written a

Ri(�k) � 0; k = 1; : : : ; 31; i = 1; 2; 3 (8)

To solve for the sensor curves we must find theRi satis-
fying Equation 6 where the constraints in this equation
Science, Systems, and Applications       92
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the constraints in Equation 8.

Modality
Modality refers to the number of peaks in a sensor cu
For example, all curves in Figure 1 have a single peak,
is they are uni-modal. To see how this constraint can
incorporated into the regression problem consider a cu
which has its peak at themth sample point. Uni-modality
can then easily be expressed as a set of linear constra

Ri(�k+1) � Ri(�k); k = 1; : : : ;m� 1
Ri(�k+1) � Ri(�k); k = m; : : : ; 31

(9)

Of course not all sensor curves will be uni-modal but
can easily posen-modality as a similar set of linear con
straints; we simply have to choose the sample points wh
the peaks (and troughs) occur. While in theory we do
know where these peaks will be, in practice we have a
sonably good idea. For example, it is unlikely that t
long-wave sensitive mechanism will have peak respo
in the short-wave region of the visible spectrum. By t
ing all ’plausible’ combinations of peak position, we c
solve for the best sensors overall. Because regressio
general, and quadratic programming in particular, can
computed quickly the overhead of a combinatorial sea
is small; trying all plausible combinations is quite feasib

Band-limitedness
By band-limitedness we mean that the sensor curve h
response to light only in a finite range of (low) frequenci
The cone sensors in the human eye have this charac
tic and so too do all device sensors. This band-limitedn
allows us to represent our sensor curves as linear co
nations of a set of band-limited basis functions. There
many possible basis functions we could choose but in
paper we use a standard Fourier basis. That is we re
sent the camera curves as a linear combination of sine
cosine functions:

Ri = �1B1 + �2B2 + : : :+ �lBl (10)

The first few basis functions are:

B1 = k; B2 = sin(x); B3 = cos(x);
B4 = sin(2x); : : :

(11)

for constantk andx = (� � 400)�=150 for � =400nm,
. . . , 700nm in 10nm intervals. Equation 4 can now be
written:

ri = CB�i; i = 1; 2; 3 (12)

where the columns ofB are the basis functionsBi. The
problem now becomes to solve for�i; the vector of weight-
ing functions for the basis. Equation 11 can be solved
The Sixth Color Imaging Conference: Color 
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regression and as before we can incorporate the pos
ity and modality constraints into the regression. The ba
function representation limits the high frequency comp
nents of the sensor curve in the visible spectrum and
can be thought of as a constraint on the smoothness o
curve. The number and type of basis functions emplo
controls how smooth the recovered functions will be.
general we have found somewhere between 9 and 15 b
functions to be sufficient.

4. Results

We have tested our recovery method on a number of de
sensors and have found it to perform well in all cases.
present results for recovering the sensors of three dif
ent colour devices here; the sensors of two 3-band dig
cameras and a Sharp JX400 colour scanner.

The first stage in the recovery procedure is to obt
the response of the device to a number of objects of kno
surface reflectance, under a known illuminant. In these
periments we used the 24 patches of the Macbeth C
Checker Chart under standard D65 illumination. For
two cameras the averaged RGB values from an imag
these 24 patches form the vectorsri in Equation 4. How-
ever, in the case of the scanner, the actual device was
available to us, so we generated synthetic RGB values f
the measured curves. To these synthetically derived va
we added a small amount of random noise (approxima
1% of the signal) to simulate the noise in the measurem
process. Spectral reflectance data (the rows ofC in Equa-
tion 4) can either be measured using a spectrophotom
or generated synthetically from published15;10 data. We
have found that using published values for the Macb
Chart10 and standard D65 illumination15 gives good re-
sults. However, the published data for the Macbeth Ch
is only for wavelengths between 400nm and 700nm.
practice many sensors will have a significant response
side this range, so extending the range over which the
gression is performed will improve results.

To recover the sensors we then simply have to solve
quadratic programming problem described above. Ty
cally, the number of peaks in our sensors and their lo
tion in the visible spectrum will be unknown and we mu
search for the location which minimises the error. F
example, if we assume our sensor to be uni-modal, t
it’s single peak could fall anywhere in the visible spe
trum. In this case we would perform 31 regressions (
suming that we are working with data in the range 400
to 700nm sampled at 10nm intervals) and get 31 estima
sensors. We choose as our estimate of the sensor, the
mate which minimises the regression error. Similarly, if w
allow our sensor to be bi-modal or tri-modal, we must
different combinations for the peaks to find the best mat
Science, Systems, and Applications       93
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Of course, if information as to the location of the senso
peaks is known this can be used to restrict the search.

Figure 1 shows the sensor curves of our first dig
camera. It is clear from this image that the sensors
all positive, uni-modal, and reasonably smooth. Figur
shows the results of applying our constrained regres
to recover an estimate of these curves. All three of
estimated sensors (dashed lines) match the estimated
sors (solid lines), measured using a monochromator, v
closely.
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Figure 2: Recovered sensors for a digital camera. The measu
sensors (solid lines) are shown together with the recovered
sors (dashed lines). Each sensor is normalised such that its m
imum sensitivity is 1.

The sensor curves of a Kodak DCS460 digital ca
era, again measured using a monochromator, are sh
as the solid lines in Figures 3 and 4. As in the case
the first camera, the red and green sensors are smoot
uni-modal. However, the blue sensor has two clear pe
and attempting to estimate this sensor without allow
bi-modality is likely to result in a poor estimate. Fig
ure 3 shows the measured red and green sensors (
lines) together with our estimates of them (dashed lin
Again our estimates match the measured data very clo
Figure 4 shows the results of estimating the blue sen
The measured data (solid line) is shown together with
estimate of the sensor restricted to be uni-modal (do
line), and an estimate allowed to be bi-modal (dashed li
Clearly the estimates of this sensor is not as good as
would have liked. However, we note that the corresp
dence between measured blue values and those pred
from the blue sensor (measured with the monochroma
is not good. This discrepancy may be due to noise in
image.
The measured sensors of the final device we tested;
Sharp JX400 colour scanner are shown as the solid l
in Figure 5. Like the curves of the two cameras the
scanner curves are positive and band-limited, and the
and blue curves are uni-modal. The green curve how
has a second small peak in the short-wavelength regio
The Sixth Color Imaging Conference: Color 
’

l
re
2
n
r
en-
ry

d
n-
x-

-
wn
f
nd

ks
g

lid
).
ly.
r.
n
d
).
e
-
ted
r)
e

e-
s

e
ed
er
of

350 400 450 500 550 600 650 700 750
0

0.2

0.4

0.6

0.8

1

Wavelength\nm

Se
ns

itiv
ity

Figure 3: Recovered red and green sensors for the Kod
DCS460 digital camera. The measured sensors (solid lines)
shown together with the recovered sensors (dashed lines). E
sensor is normalised such that its maximum sensitivity is 1.
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Figure 4: Recovered blue sensor for the Kodak DCS460 d
tal camera. The measured sensor (solid line) is shown toge
with an estimate constrained to be uni-modal (dotted line) a
an estimate without this constraint (dashed line). Each senso
normalised such that its maximum sensitivity is 1.

the visible spectrum. The estimated sensors are show
dashed lines in Figure 5. Once more our recovered e
mated match the measured data very closely, and agai
allowing bi-modality results in a slightly better fit for th
green sensor than would otherwise be possible.

5. Conclusions

Good colour correction of images taken with devices s
as digital cameras and scanners requires that the spe
sensitivity curves of these devices be known. In this
per we have shown that these spectral sensitivities de
a linear relationship between the measured camera R
and the surface reflectance functions of the imaged
jects. This linear relationship implies that if we have a
of camera RGBs for objects of known surface reflecta
we can solve for the camera sensitivities. We have s
however that solving for the camera sensitivities by sim
Science, Systems, and Applications       94
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Figure 5: Recovered sensors for a colour scanner. The act
sensors (solid lines) are shown together with the recovered s
sors (dashed lines). Each sensor is normalised such that its m
imum sensitivity is 1.

regression results in a very poor estimate of the sens
This led us to incorporate the linear constraints of posi
ity, modality, and band-limitedness into the regression
posing the problem in a quadratic programming form.

This results in a simple but very effective method f
recovering sensor curves. Results presented in this p
for three devices show that the recovered sensor curve
very close to the actual curves and are likely to be go
enough for all practical purposes,
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