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Abstract from camera RGBs to XYZs using interpolation and look-

T | gict th ¢ colour devi up tables?57 A simpler approach is to transform RGB

0 acc.ur'ate y predict the response of colour devICeS 5,05 to XYZ values using a linear transform i.e. a single
SUCh. as .d|g|tal cameras to spectral ?‘“m“" their spectray 3 matrix. Such linear transforms can be determined by
sensitivities need to be known. In this paper we presen?"naking certain assumptions about the spectral correlation

a simple, flexible method for characterising such deV'CeSstatistics of the scene. Previous autRdrave determined

based onasingle image of a Macbeth Color Checker Char&?, x 3 matrix using only the assumption that all colour sig-

We begin by showing that device RGBs are linearly 5|5 are equally likely - the so called maximum ignorance

related to the Macbeth reflectances and that this linear redssumption. In more recent wérkhey added the further

lationship is defined by the spectral sensitivities of the de'constraintthat the white-point be preserved under the map-

vice. It follows then that it should be possible to solve forping. The ease with which this matrix can be calculated

these sensitivities by linear regression. However, this Simz g the fact that its visual results compare favourably with

ple idea does notwork well in practice - recovered sensitiVyiner methods based on surface reflectance statidtis

ities are very different from the actual device sensitivities. led to its proposdlas a standard method for transforming
The simple regression fails because the Macbeth refom device co-ordinates to tristimulus co-ordinates.

flectance set has limited dimensionality and so the regres- Unfortunately, determining the maximum ignorance lin-

sion IS hlghly sensitive to image noise. To overcome ,th'sear transform for a device, is not possible unless its spectral
problem we incorporate a number of natural constraints;

s : - : sensitivities are known. Knowledge of a device’s spectral
positivity, modality, and band-limitedness into the regres-

ion f lation. Each traint b itt i sensitivity curves is important in other applications too.
slonformuiation. £ach constraint can be written as a Ine""[:orexample,'[o obtain good colour reproduction of images

inequality and so solving for device sensitivities by thisfrom a digital camera the scene illuminant must be known.

constramgd regression is a qqadratlc programming IOrOt15ractical algorithms to estimate the scene illuminant from
lem. Posing the problem in this form, we can search for,

the sensors which best fit the data, quickly and efficientlythe image data have been developldt they can only be

by trving diff ; binati fthe i traint applied when the camera sensitivities are known. Since in
y rying ditferent combinations otthe finear constraints. general manufacturers do not make the spectral character-

The results of performing this constrained regressiongiics of their sensors available, the user must characterise
on a number of colour devices are presented here. In aj},.ir own device

cases our new technigue recovers sensors which are very The standard techniaue for measuring the spectral sen
close to the actual device sensitivities and we are confident 9 9 P

. . sitivities of a colour device requires the user to record the
that these results will extrapolate to other colour devices. . - ..
device’s response to monochromatic light across the visi-

ble spectrum. This is a difficult task since it involves using
1. Introduction a monochromator (an expensive piece of physics equip-

ment) or a series of very narrow-bdid?® interference fil-
The use of colour devices such as digital cameras and scaffrs (which too are expensive, and their use is tedious).
ners is becoming increasing|y Widespread_ Good Co|ouﬂ—hese difficulties make measuring the Spectral sensitivity
correction of images from these devices requires that wéurves impractical for most users.
are able to obtain colorimetric data from them. Thatis, we In this paper we present an alternative approach to de-
need to be able to relate the device RGB values to XYZvice characterisation, formulating the problem as one of
tristimulus values. This can be achieved in a number ofonstrained regression. Rather than relying on making ac-
ways. For example, given a set of targets we can mapurate measurements of the device sensitivities, our ap-
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proach requires only, that we can record the response of

the device to a number of objects of known surface re- 51

flectance (for example a Macbeth Color Checker Chart) i , , .

under known illumination conditions. i = 1; B)S; (M) Bi(M), i=123 ()
As we will show, the responses of a device (typically a B

set of RGB values) are linearly related to the spectral surOr, re-writing Equation 2 in vector form:

face reflectance data, and furthermore this relationship is _

defined by the sensor response functions. It follows that r = Q;.Ei, i=1,2,3 3)

we should be able to solve for the sensors by a simple lin-

ear regression. However a a regression of this kind leads gyherec;, = E(A)S;(A) and Ry, = Ri(Ax). Now sup-

very poor estimates of the sensors. This poor performanc%ose we capture an image of a number of objects of known

is due to the limited dimensionality of surface reflectamcere‘clem"’Ince under known illumination conditions; here we
take as our objects the 24 patches of the Macbeth Color

functions, which leads to sensor estimates which are highl¥: .
" o : hecker Chart which represent a range of naturally oc-
sensitive to noise in the device responses. To overcomethig

problem we incorporate into the problem formulation g curring reflectance spectra. Averaging the recorded sensor

number of natural constraints; sensitivity functions shouldValues for each patch results in 24 equations of the form of

be positive, have limited modality, and be bamd—limited..EquaItlon 3. Placing the 24 sensor values ofithesensor

We then solve for the sensor functions by a constrained’ & vectorr;, we can combine these 24 equations into a

regression. The fact that all the constraints are linear a|§|ngle matrix equation:

lows us to pose the regression in a quadratic programming ,
form®, easily solvable using a package such as MATLAB. r; = CR; l. =123 “)

In Section 2 of this paper we state the problem of senwhere thejth element of-; is ! and thejth row of C' is
sor estimation as a linear regression problem and show;,. Equation 4 represents a system of 24 equations in 31
that an unconstrained regression leads to poor sensor esaknowns -R(\;,), (k =1,...31) anunder-determined
timates. We present our method for constraining the resystem. Although we cannot find an exact solution to this
gression and its formulation as a quadratic programminget of equations we can find a non-unigue least-squares
problem in Section 3 and relate this new method to preapproximation taR, such that this approximatiall min-
viously published work’>!!. In Section 4 we present the imises the residual squared error:
results of using this new method to characterise a number
of colour devices. The results show that in all cases the ICR; —r;| (5)

recovered sensors are very close to the actual (measureij1 b h of Fi 1sh h It of 5
sensors. Finally we summarise this work and draw som e ottom graph o Igure 1 shows the r.esut o recov
conclusions from it in Section 5. ering the sensors'(top of Figure 1) of a typlcall 3-bagtul
digital camera using a least-squares regression; clearly a
very poor estimate of the camera sensitivities. The reason
that an unconstrained regression performs so badly is that
though the surface spectral reflectance functions are repre-
ggnted by 31 dimensional vectors, the true dimensionality
'of these functions is much less (studies suggest that the
24 reflectance functions of the Macbeth chart can be accu-
rately represented by as few as 3 basis functiangore-
over adding more reflectances or using a different set of
= / E(N)S; (AR (\)dA, i=1,2,3 (1) surfacereflectance functionsis unlikely to improve the sit-
w uation since it has been demonstrétEtthat naturally oc-
whereE()) is the spectral power distribution of the scene curring surface reflectance functions can be approximated
illuminant, S;(\) is the surface reflectance imaged at pixel by between 6 and 9 basis functions. This reduced dimen-
7, Ri(\) is the spectral sensitivity of theh sensor, and the ~ sionality results in an estimate &f; which is highly sen-
integral is taken over the visible spectrumFor practical ~ Sitive to noise in the measured sensor values.
purposes it is sufficient to approximate the various contin-
uous spectra by their value at a number of discrete sam- 3. Constraining the Problem
ple points; typically 31 sample points are used, between
400nm and 700nm at 10nm intervals. Adopting these apThe spectral sensitivity curves of the digital camera which
proximations the integral is replaced by a summation an@re shown in Figure 1 exhibit a number of features which
Equation 1 becomes: are likely to be common to the majority of device sensors.

2. Statement of the Problem

For the purposes of this paper we assume that the outp
of our device is a three-band digital image. At each pixel
j the value recorded in th#h band of the image is given
by the equation:
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thermore the solution returned by POCS is quite sensitive
to the choice of the initial iteration point. In later work
Barnard® used essentially the same constraints to solve
for a set of camera sensors. However he reformulated the
problem as one of minimising the sum of squares relative
error subject to the linear constraints, and solved the re-
gression using a standard numerical solution method.
Importantly, as well as being intuitive, all of the con-
straints we have introduced here can also be written as sim-
ple linear inequalities. This linearity allows us to formu-
late the regression as a quadratic programfprgblem;
that is we can pose the problem as one of minimising the
quadratic objective function:

Sensitivity
o
@

ICR; _fi”z

Sensitivity
9
°

subject to a set of linear constraints:

N e arpRi(AM)+ ... FarziRi(Az) < by

350 400 450 500 W;\E/Delengtio\unm 650 700 750 800 a271RZ’ ()\1)+ L. +a2731Ri(>\31) S b2
Figure L The sensor curves of a typical 3-band digital camera : : 6)
top) and the sensors obtained by a simple linear regression (bot- ' :
(top) y p g ( amiRiM)+ oo 4amsiRi(ha1) < b

tom).

where thea; ;, b; will be determined by the nature of the
constraint which is being applied. Equally we could choose

First, the curves are everywhere positive: as all sensors wif® Minimise the sum of squares relative error:

be since a device cannot have a negative response to a stim- 04

ulus. Second, the curves in Figure 1 are uni-modal — they Z C]R - ) )
have a single peak. While we cannot be sure that all sen- o

sor curves will have only a single peak it is likely that the

number of peaks will be relatively few — allowing curves g5 Barnartf suggests. Quadratic programming is exactly

to be bi-modal or tri-modal will cover the majority of sen- the same as linear programming except for the quadratic

sor curves. Finally the curves are band-limited; a propertyypjective function. Like linear programming there is al-

shared by all device sensors. We propose that by incorp@yays a unique global optimum and it is always found.

rating these natural constraints into the regression formugyhen the regression is posed in this form it can easily be

lation, we can constrain the problem enough to overcomegolved using standard mathematical software (MATLAB

the noise sensitivity problem and thus obtain accurate estipr example), and moreover the simplicity of the method

mates of the sensors. allows one to search many different combinations of con-
A number of other authors have taken a similar ap-straints to search for the best estimates of the sensors. We

proach to sensor estimation. For example, in their work omow consider each of the three constraints in more detail,

scanner characterisation, Sharma and Trisselposed  showing that they can be formulated as sets of linear in-

the constraints of positivity and smoothness (by boundingzqualities, and we give some guidelines as to their use.

a discrete estimation of the second derivative), and also

bounded the maximum, and sum of squares error. Notpositivity

ing that all these constraints are convex, they formulatedhe constraint that our sensors are positive is written as :

the regression problem in a set-theoretic form and used the

mathematical technique of Projections Onto Convex Sets

(POCS) to solve for the sensors. However POCS is an  R;()\;) > 0, k=1,...,31, i=1,2,3 (8)

iterative method, and although it is guaranteed to give a

solution that satisfies all the constraints (provided the soJo solve for the sensor curves we must find fesatis-

lution set is non-empty) this solution is not optimal. Fur- fying Equation 6 where the constraints in this equation are
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the constraints in Equation 8. regression and as before we can incorporate the positiv-
ity and modality constraints into the regression. The basis
Modality function representation limits the high frequency compo-

Modality refers to the number of peaks in a sensor curvenents of the sensor curve in the visible spectrum and so
For example, all curves in Figure 1 have a single peak, thatan be thought of as a constraint on the smoothness of the
is they are uni-modal. To see how this constraint can beurve. The number and type of basis functions employed
incorporated into the regression problem consider a curveontrols how smooth the recovered functions will be. In
which has its peak at theth sample point. Uni-modality general we have found somewhere between 9 and 15 basis
can then easily be expressed as a set of linear constraintsunctions to be sufficient.

Rz(Ak+1) SRZ()‘k)a k:m,,31
We have tested our recovery method on a number of device
can easily pose-modality as a similar set of linear con- sensors and have found it to perform well in all cases. We

straints; we simply have to choose the sample points wher@resent results for recovering the sensors of three differ-

the peaks (and troughs) occur. While in theory we do nofnt colour devices here; the sensors of two 3-band digital

know where these peaks will be, in practice we have a reaameras and a Sharp JX400 colour scanner.

sonably good idea. For example, it is unlikely that the The first stage in th.e recovery procedur.e is to obtain
long-wave sensitive mechanism will have peak response response of the device to a number of objects of known
in the short-wave region of the visible spectrum. By try- surface reflectance, under a known illuminant. In these ex-
ing all "plausible’ combinations of peak position, we can Periments we used the 24 patches of the Macbeth Color
solve for the best sensors overall. Because regression fahecker Chart under standard D65 illumination. For the
general, and quadratic programming in particular, can b&Wo cameras the averaged RGB values from an image of
computed quickly the overhead of a combinatorial searctihese 24 patches form the vecteysn Equation 4. How-
is small; trying all plausible combinations is quite feasible. €Ver. in the case of the scanner, the actual device was un-
available to us, so we generated synthetic RGB values from

Band-limitedness the measured curves. To these synthetically derived values

By band-limitedness we mean that the sensor curve has%€ 2dded a small amount of random noise (approximately
response to light only in a finite range of (low) frequencies.l% of the signal) to simulate the noise in the measurement
The cone sensors in the human eye have this characteriBl0C€SS. Spectral reflectance data (the rows 6f Equa-

tic and so too do all device sensors. This band-limitednes#on 4) can either be measured using a spectrophotometer,
allows us to represent our sensor curves as linear comb’ generated synthetically from publisied” data. We
nations of a set of band-limited basis functions. There aré@ve found that using published values for the Macbeth
many possible basis functions we could choose but in thi€hart® and standard D65 illuminatioh gives good re-
paper we use a standard Fourier basis. That is we repréUltS- However, the published data for the Macbeth Chart

sent the camera curves as a linear combination of sine arld only for wavelengths between 400nm and 700nm. In

Of course not all sensor curves will be uni-modal but we

cosine functions: practice many sensors will have a significant response out-
side this range, so extending the range over which the re-
R, = 01By + 03By + ...+ 01 B, (10) gression is performed will improve results.
R, . /

To recover the sensors we then simply have to solve the
quadratic programming problem described above. Typi-
cally, the number of peaks in our sensors and their loca-
tion in the visible spectrum will be unknown and we must
search for the location which minimises the error. For
example, if we assume our sensor to be uni-modal, then
for constantt andz = (A — 400)/150 for A =400nm, 4 gingle peak could fall anywhere in the visible spec-
700nm in 10nm intervals. Equation 4 can now be r'etrum. In this case we would perform 31 regressions (as-
written: suming that we are working with data in the range 400nm

. to 700nm sampled at 10nm intervals) and get 31 estimated
r; = CBg;, 1=12,3 (12) " sensors. We choose as our estimate of the sensor, the esti-
where the columns aB are the basis functionB,. The  mate which minimises the regression error. Similarly, if we
problem now becomes to solve fgy; the vector of weight-  allow our sensor to be bi-modal or tri-modal, we must try
ing functions for the basis. Equation 11 can be solved bydifferent combinations for the peaks to find the best match.

The first few basis functions are:

B, =k, B, = sin(z), B; = cos(x),

B, = sin(2z), (11)
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Of course, if information as to the location of the sensors’
peaks is known this can be used to restrict the search.

Figure 1 shows the sensor curves of our first digital
camera. It is clear from this image that the sensors are
all positive, uni-modal, and reasonably smooth. Figure 2
shows the results of applying our constrained regression
to recover an estimate of these curves. All three of our -«
estimated sensors (dashed lines) match the estimated sen
sors (solid lines), measured using a monochromator, very
closely.

1
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Figure 3 Recovered red and green sensors for the Kodak
DCS460 digital camera. The measured sensors (solid lines) are
shown together with the recovered sensors (dashed lines). Each
sensor is normalised such that its maximum sensitivity is 1.
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Figure 2 Recovered sensors for a digital camera. The measured
sensors (solid lines) are shown together with the recovered sen-  °*
sors (dashed lines). Each sensor is normalised such that its max-
imum sensitivity is 1.
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The sensor curves of a Kodak DCS460 digital cam-rigyre 4 Recovered blue sensor for the Kodak DCS460 digi-

era, again. m?asufed _USing a monOChrom_ator’ are shOWR camera. The measured sensor (solid line) is shown together
as the solid lines in Figures 3 and 4. As in the case Ofyjith an estimate constrained to be uni-modal (dotted line) and

th"j first camera, the red and green sensors are smooth agd estimate without this constraint (dashed line). Each sensor is
uni-modal. However, the blue sensor has two clear peakg§ormalised such that its maximum sensitivity is 1.

and attempting to estimate this sensor without allowing

bi-modality is likely to result in a poor estimate. Fig-

ure 3 shows the measured red and green sensors (solid .

lines) together with our estimates of them (dashed lines)the Visible spectrum. The estimated sensors are shown as
Again our estimates match the measured data very closelg@shed lines in Figure 5. Once more our recovered esti-
Figure 4 shows the results of estimating the blue sensofated match the measured data very closely, and again the
The measured data (solid line) is shown together with ar@llowing bi-modality results in a slightly better fit for the
estimate of the sensor restricted to be uni-modal (dotte§reen sensor than would otherwise be possible.

line), and an estimate allowed to be bi-modal (dashed line).

Clearly the estimates of this sensor is not as good as we 5. Conclusions

would have liked. However, we note that the correspon-

dence between measured blue values and those predict&bod colour correction of images taken with devices such
from the blue sensor (measured with the monochromators digital cameras and scanners requires that the spectral
is not good. This discrepancy may be due to noise in thesensitivity curves of these devices be known. In this pa-
image. per we have shown that these spectral sensitivities define
The measured sensors of the final device we tested; thex linear relationship between the measured camera RGBs
Sharp JX400 colour scanner are shown as the solid lineand the surface reflectance functions of the imaged ob-
in Figure 5. Like the curves of the two cameras thesgects. This linear relationship implies that if we have a set
scanner curves are positive and band-limited, and the redf camera RGBs for objects of known surface reflectance
and blue curves are uni-modal. The green curve howevexe can solve for the camera sensitivities. We have seen
has a second small peak in the short-wavelength region dfowever that solving for the camera sensitivities by simple
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