
Correcting Color-Measurement Error
Caused by Stray Light in Image Scanners

Peter A. Jansson
DuPont Company, Wilmington, Delaware 19880-0357

and
Robert P. Breault

Breault Research Organization, Tucson, Arizona 85715

Copyright 1998, IS&T
Abstract

All optical systems suffer from stray light due to unde-
sired reflections plus light scattering from surface imperfec-
tions, dust, other particles and similar causes. This unwanted
light flux can cause serious errors in imaging colorimetry
and densitometry. Although minimizing stray-light error has
heretofore required complex and expensive optomechanical
scanner designs, simpler designs are sometimes preferred
because of cost, or for remote detection applications. In this
paper, we show that a color error of ∆EL*a*b* = 10 or more
is to be expected due to stray light alone in a simple
imaging colorimeter, and that this error may easily be
corrected† with inexpensive signal processing technology.
Line scanners, densitometers, imaging radiometers, and on-
line web-product inspection scanners can also benefit
substantially.

Introduction

Controlling stray light has always been important in
optical design.1 Caused by phenomena such as Fresnel
reflection from lens surfaces, air bubbles in glass, dust,
diffraction at aperture edges, and numerous other effects, its
presence frequently degrades both image contrast and
measurement accuracy. Methods for control have included
stops, baffles, apertures, black paint, and dielectric anti-
reflection coatings for lenses. In single-color area-sensing
colorimetry where sample contact is permitted, many of
these means have been employed. Especially relevant in this
application, however, is physical isolation of the desired
sampling region so that all the light flux returned to the
detector meets the geometrical definition required by the
measurement. By this means, unwanted flux is excluded.
Nevertheless, when the sensing region is nearly the same
size as the illuminated region, lateral-diffusion error due to
scattering can be problematic.2

When a large number of color measurements are required
in sequence, as in image scanning, control of unwanted flux
is challenging. The best stray-light reduction in image
scanners is achieved by expensive, slow, and typically large
high-end flatbed microdensitometers that employ mechanical
reciprocating motion on both image Cartesian-coordinate
axes. These units use a field aperture to define illumination
for a single object or sample pixel, then image the reflected
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or transmitted flux into the plane of a receiving aperture, and
finally detect the flux passing through this aperture.
Although this technique has been known and applied to pla-
nar samples for years, it may now be best known for its
modern use with volume samples in scanning confocal mi-
croscopy.

If the sample object is flexible, such as a photographic
transparency, a rotary motion can replace the awkward high-
speed reciprocating motion. Drum scanners based on this
idea translate the aligned confocal illuminating and detecting
modules along the axis of a rotating drum, about whose
surface the transparency is wrapped. Although much faster
than a two-axis flatbed, these units remain large, expensive,
and too slow for many applications.

Convenient desktop scanning is now provided in flatbed
units that have only one Cartesian axis of motion. These
units typically illuminate a full line of pixels
simultaneously and detect their fluxes simultaneously with a
linear photodetector array. In these units, stray-light
performance is compromised to achieve improved size, cost
and speed. Each photodetector pixel element receives flux,
not only from its desired conjugate pixel on the sample, but
from neighboring pixels as well. The culprit is stray light
due to scattering and undesired reflections.

Today, with the advent of continually improved area-
sensing color scanners such as solid-state video cameras, re-
searchers are beginning to apply this most-convenient no-
moving-parts technology to color measurement.3,4,5 Here,
potential exists to spatially resolve and colorimetrically
characterize multicolored samples and passively observed
remote scenes. Even more than the single-line-illuminated
flatbed, however, these imaging colorimeters are subject to
errors caused by stray flux originating from sample locations
outside the zone of interest. In the sections that follow we
will show how severe the problem can be, and demonstrate
that it can be corrected easily by a digital signal processor
(DSP) working in real time. The problem to be solved is a
close relative of the classic, often-ill-posed, inverse problem
called deconvolution. In the stray-light case, however, the
nature of the spread function lends itself to robust and stable
inversion when paired with a classic iteration scheme and a
particular normalization. Results can be applied to line-scan
flatbeds, area-sensing imaging colorimeters, and many other
types of densitometers and colorimeters.
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Magnitude of the Error

For illustration purposes, we will choose an example
from area-sensing imaging colorimetry. Prior work had
given one of us experience imaging black and white trans-
parency material back-illuminated with a diffusing light box
and video camera.6 In this application, opaque spots popu-
lated an essentially transparent background. The largest such
spot extended over about 12 per cent of the image linear
dimension, so that the spot covered approximately 1.44 per
cent of the image area. The center of the opaque spot suffered
stray-light contamination of about 2 per cent, thereby
limiting the maximum optical density to a value of D =
log(1.0/0.02) ≈  1.7. The optical-density error was substan-
tial; the result should have been infinite or undefined.
Obviously readings close to D  = 1.7 were meaningless and
conveyed little or no information about the true transparency
density. Even at lesser optical density, the same amount of
stray light contributed serious error. For example, a pixel
having a true optical density of 1.3 would give a reading of

D = log10

I0

Id + Is







≈ 1.154, (1)

where the Id  is the direct flux having a value of 10–1.3 × I0 =
.0501 × I0 and Is is the stray flux having a value of 0.02 ×
I0. The error in optical-density units is therefore –0.146, or
11.2 per cent of the measurement. The density error
described in the foregoing, which occurred at the center of a
large spot, resulted from stray contributions associated with
pixels quite distant from the affected pixel. Smaller spots, as
well as densities measured in the same spot near its edge,
suffered far greater error than this because stray-light
contributions typically increase with decreasing distance be-
tween detection pixel and the detector-plane pixel conjugate
to the source pixel. Knowing that stray light can have this
disastrous impact on a densitometer, we were motivated to
investigate its effect on color images.

Consider a color image acquired passively from a real-
world scene by a solid-state video camera. By analogy with
the densitometer example cited above, comparable levels of
stray light should contaminate image spots having compa-
rable area. In particular, consider the example of imaging a
blue flower on a green grass field. Assume the green field
has CIE color coordinates of 10, 30, and 10, respectively, in
the XYZ system.7 Likewise give the blue flower coordinates
of 10, 10, 30. Because the XYZ system is radiometrically
linear, we readily obtain the coordinates of the contaminated
blue color by adding 5 per cent of the green flux to 95 per
cent of the blue flux. See Fig. 1. The result is an XYZ
measurement of 10, 11, and 29. To place this result in per-
ceptual perspective, convert the three sets of coordinates to
the L*a*b* space, which is perceptually uniform to good
approximation. The color difference between measured and
true values for blue are given by the Euclidean distance be-
tween the two colors in this space as ∆EL*a*b* = 8.94. We il-
lustrate this computation in Fig. 1.
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Figure 1. Error introduced by stray light contaminating the
image of a blue flower on a green field

Analogous computation for a more saturated green (6.5,
40, and 2.5) and blue (6.5, 2.5, and 40) with only 2 per cent
contamination gave ∆EL*a*b* = 15.07. Contamination of 4%
white background in a 5% reflecting or transmitting black
spot gave a ∆EL*a*b* = 9.09.

Again, our computation is conservative because we
considered measurements at the center of a large spot.
Because stray light originating from a given pixel most
severely affects its closest neighbors, we expect color error
for small-spot measurements to be much larger. To accu-
rately gauge the magnitude of this error in practice, and to
allow for its correction, we need to characterize and quanti-
tate the phenomena contributing to the stray light.

Stray-Light Function and Its
Characterization

Optical systems can be characterized by the way in
which they collect multi-angle flux originating from a
single point on an object and concentrate it in the image
plane. Ideally, in the geometrical optics approximation, the
image-plane flux corresponding to a single object point
ought to be itself a single point. Real optical systems,
however, are subject to geometrical aberrations, diffraction,
and in the present discussion, stray light. Flux originating
from a single object point is therefore spread over a finite
region in the image plane. The function characteristic of this
spread is called the point-spread function or PSF. Typical
analyses neglect stray light and consider the relatively small-
cored PSF that results from diffraction and aberrations. Here
we consider a PSF that includes stray flux originating from
any point in the image and being received at any other point.
The stray-flux part of the PSF may vary slowly, but could
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also contain contributions from sharper structure such as
ghost images and specular glints.

For simplicity in the following discussion, let us con-
sider, without loss of generality, a line scanner in which
only one spatial axis requires consideration. (The finite-ex-
tent two-dimensional case can also readily be formulated
with one independent variable.8) Let s(x, ′x )  be the PSF of
such a scanner in which the flux received by a detector hav-
ing coordinate x  along an image line is given by

i(x) = s(x, ′x )o(∫ ′x )d ′x ,        (2)

where o( ′x )  is the flux emanating from points along some
object line having coordinate ′x . The limits of the integral
are taken to cover the entire object. A PSF requiring a single
independent variable is said to be shift-invariant. The scanner
it describes can be termed isoplanatic. In this case, the
spreading characteristic relative to neighboring image points
is independent of spatial location. More realistic is the shift-
variant case in which two independent variables are required.
For a scanner with a shift-invariant PSF, Eq. (2) becomes a
convolution.

A number of optical phenomena affecting the form of
s(x, ′x )  vary with the wavelength of light. Among these are
the scattering of light by dust particles, bubbles and sur-
faces, wavelength dispersion of light by dielectrics, and
diffraction. We may understand Eq. (2) to be valid at just one
wavelength, or we may include wavelength as a variable λ ,
thereby giving

i x s x x o x dx( , ) ( , , ) ( , ) .λ λ λ= ′ ′ ′∫ (3)

However, consider also that, for color-measurement
purposes, we compute tristimulus values from equations7

having the form Y  = y∫ (λ)I(λ)dλ,  where Y  is one of the
three tristimulus values X , Y , and Z representing the eye's
response to a polychromatic chromatic flux I(λ )  incident
upon it, and y(λ )  is the CIE standard-observer luminosity
function. The quantities X and Z  are computed from like
equations in which y  is substituted by the other two stan-
dard-observer functions x and z , respectively.7 From these
definitions, we may see that the eye's response to a spatially
varying flux i(x, λ )  is typified by

Yi (x) = y(λ )i(x,λ )dλ∫ .        (4)

Substituting Eq. (3) into Eq. (4), we find that

Yi (x) = y(λ )∫ s(x, ′x ,λ )∫ o( ′x ,λ )d ′x[ ]dλ .      (5)

Reversing integration order, we note that the PSF may
be removed from the integrand only if it is wavelength-inde-
pendent. In this case we obtain

Yi (x) = s(x, ′x )∫ y(λ )o( ′x ,λ )dλ∫[ ]d ′x . (6)

Therefore the equivalent visual Y-response to polychromatic
flux o( ′x ,λ )  that has passed through the scanner is per-
fectly well modeled by applying the imaging equation to the
spatially varying tristimulus-integrated object flux o( ′x ,λ ) ,
so that
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Yi (x) = s(x, ′x )Yo (∫ ′x )d ′x , (7)

where Yo(x) = y∫ (λ)o(x′,λ)dλ. Analogous equations obtain
for the X and Z  values. Thus we see that Eq. (2), the imag-
ing equation, is equally applicable to spatially varying
tristimulus values as it is to monochromatic fluxes but rig-
orously only for the case in which the PSF is wavelength-
independent. Nevertheless, wavelength independence may be
a useful approximation for practical applications. With these
caveats in mind, for simplicity of notation we suppress the
wavelength dependence of variables in the balance of this
paper.

Removing the stray-light contribution from the image
data i(x) requires specific knowledge of the PSF s(x, x′) that
affected those data. The definition of s(x, x′) suggests its
most direct means of determination. One can introduce a
small light source, approximating a point, into the object
plane, then measure detector responses in the image plane.
Alternately, one could measure a known test object such as
one approximating a Heaviside step,9 and then use these data
to compute the PSF.

Correcting the Image

A classic method of solving Eq. (2) for o(x), where s(x,
x′) is a convolution kernel, has been in use since Van
Cittert10 first applied it to X-ray data in 1931. His method8

generates a succession of improved object estimates

ô(k+1) = ô(k) + (i − s ⊗ ô(k) ) ,         (8)

given a starting-point estimate ô(0) . Here we have sup-
pressed the variable dependence for clarity and used the op-
erator " ⊗" to denote convolution. Van Cittert's method,
when it converges, converges to a simple inverse filter.8 It
is a linear deconvolution method and is normally subject to
all the attendant difficulties of linear methods applied to ill-
posed deconvolution problems.8 In the following section,
we will demonstrate that correcting images for stray-light
contamination is not ill-posed, and is therefore responsive to
the method. For the purpose of further discussion, we will
generalize the Van Cittert method to the shift variant case,
which is realistic for the stray-light problem, and let the
" ⊗" operator denote the integral operation for both cases.
The discrete-sampled Van Cittert method for this case is
identical to the Jacobi method for iteratively solving a set
linear equations.8

PSF Normalization
and the First Object Estimate

We tailor Van Cittert’s method to the stray-light case
by accounting for specific features of the stray-light PSF
s(x, x′). In particular, let sp(x, x′) = δ(x – x′), the Dirac delta
function, denote the PSF of an idealized "perfect" scanner
not subject to image contamination by stray light, and
sD (x, ′x )  describe purely the stray-light component, so that
we have

s(x) = sp (x) + sD (x) (9)
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for a real scanner. Note that because δ∫ (x)dx = 1, we have
tacitly assumed that the integral of the "perfect" part of s is
normalized to unity so that necessarily

sp (x, ′x )d ′x =∫ sp ( ′x , x)d ′x = 1∫ (10)

for all x, and

s(x, ′x )d ′x∫ = s( ′x , x)d ′x∫ > 1 (11)

for all x. This normalization is relevant and in fact essential,
not necessarily in general but to facilitate the result that fol-
lows immediately.

In using Van Cittert’s method, one typically assumes
an initial object estimate ô(0) = i . Applying that assumption
in the present case, we obtain by substitution

ô(1) = (i) + (i − s ⊗ i)
= (sP ⊗ o + sD ⊗ o) + [(sP ⊗ o + sD ⊗ o)

− sP ⊗ sP ⊗ o − 2sP ⊗ sD ⊗ o − sD ⊗ sD ⊗ o].
(12)

Noting the normalization of sP  and collecting terms, we
find

ô(1) = o − sD ⊗ sD ⊗ o .      (13)

This is an especially interesting result, a serendipitous
consequence of the choice for normalizing the PSF. We have
found that the first iteration object estimate is indeed the
object itself, in error by only the term −sD ⊗ sD ⊗ o , which
is relatively small because

sD (x, ′x )d∫ ′x << sP (x, ′x )d∫ ′x (14)

for all x for most scanners in practice! Let us see how well
it works.

Results with Simulated Data

To test the algorithm's capability to remove stray-light
contamination, we synthesized a monochromatic one-di-
mensional object having six spots, each having a Gaussian
flux profile. See Fig. 2. The spots each had a half-width at
half maximum (HWHM) of 10 2/ ln  pixels. They had
amplitudes of 0.3, 0.6, 0.8, 0.1, 0.2, and 0.5, and were
located in a 1000 pixel image at pixel locations 253, 500,
540, 605, 635, and 640, respectively. We numerically
approximated a scanner PSF that superposed a delta-function
core (written here as a narrow gaussian) on a stray-light
"skirt" that fell off inversely with distance at large distance
from the core:

s(x) = sP (x) + sD (x)

= exp − 1000x( )2[ ] + 1
100 x + 1( )













1.01.
(15)

The quantity 1.01 in the denominator of Eq. (15) provided
normalization in a manner consistent with foregoing
Eq. (10). We used discrete circular convolution to contami-
nate the synthetic object in a manner analogous to Eq. (2),
the imaging equation, and display the result in Fig. 3.
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Figure 2. Portion of one-dimensional object

Figure 3. Object contaminated by stray light flux

Figure 4. Object contaminated by stray light and detec-
tion noise
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Virtually perfect deconvolution is possible even with
the most difficult PSF's when data are essentially noise-free.
To provide a fair test of the method, we added random noise
uniformly distributed over the interval from 0 to 0.001 (see
Fig. 4).

Figure 5. Restored object; Image corrected by removing stray-
light contribution

The result of the stray-light correction appears in Fig.
5. This figure shows an ordinate-magnified portion of first
object estimate ô(1) . In this figure, we see that the stray-
light contribution is reduced by well over an order of magni-
tude. Furthermore, the original object is reproduced with ex-
cellent fidelity. A comparable reduction in a densitometer's
stray light corresponds to more than one full optical-density
unit improvement in a densitometer's useful range. In an
imaging colorimeter, this performance-limiting error is vir-
tually eliminated. By this, we mean that the stray-light-in-
duced color error can be reduced below the level resulting
from other error sources. United States11 and foreign patents
have been awarded for this improvement to image scanning.

Conclusion

We have demonstrated the correction of color error in-
duced by light stray-light levels typical of those found in
modern high-speed densitometers and imaging colorimeters.
The correction method has the potential to eliminate this er-
ror as a serious limitation of these instruments. We achieved
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our objective by adapting a classic linear deconvolution
method to the more general task of removing shift-variant
stray-light contamination from the scanned images.
Operating directly in signal space, one cycle of correction
was sufficient. A particular PSF normalization was key to
achieving the objective of extremely rapid convergence.
Additional cycles could readily be added but are probably not
required. With suitable attention to data-sampling issues and
code efficiency, an embedded DSP could perform the
correction in real time, and in a manner transparent to the
user. Our technology is believed to have commercial poten-
tial in scanning densitometers, area-sensing and line-scan-
ning imaging colorimeters, imaging radiometers, and for on-
line inspection of web products such as multicolored textiles
and printed matter.
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