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Abstract
It is commonplace to use a3 � 3 linear transform to

map device RGBs to XYZs. Two particular types of tra
forms have been developed based on the assumption
we either maximally ignorant or maximally prescient ab
the world. Under the maximum ignorance assumption,
assumed that nothing is known about the spectral stati
of the world and so the best correction transform is the
that maps device spectral sensitivities so they are as c
to observer sensitivities as possible. Under maximum
science, we know the spectral statistics that we will
serve and so the maximally prescient transform maps,
minimum error, the RGBs (that we know we will see ) on
corresponding XYZs. In general the two assumptions l
to quite different color corrections.

In previous work we have argued against total ig
rance or prescience and have instead developed com
mise transforms. Our work is based on two observati
First, one is never completely ignorant about the world
color signal spectral power distributions are everywhere
positive. Second, it is accepted that it is much more imp
tant to correct some colors than other. In particular, w
is central to color vision and color imaging, so it is imp
ative that white should always look right.

However, to date these two compromise solutions h
been studied in isolation. Surely, it would be advan
geous to combine the constraints of whiteness and p
tivity? In fact we show that this is not the case: by p
serving white we enforce positivity. This is an importa
result. Not only does it add to our understanding of co
correction, but it helps explain color correction results p
lished in the literature (the assumptions of positivity a
white-preservation lead to very similar results). Moreov
it helps us to derive a new measure for assessing the g
ness (color correctability) of camera sensors that is str
less pessimistic (and more accurate) than the existing
Value.
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1. Introduction

Color correction, mapping device RGBs to XYZs, is a ce
tral problem in color imaging[1]. After many years of re
search, standardized correction methods are evolving
the domain of digital cameras, the standard method
volves transforming RGBs to XYZs using the ‘approp
ate’ linear transform. The definition of ‘appropriate’ d
pends on the assumptions that are made when der
the transform. Recently, two weak, and so easily jus
able, assumptions have emerged. First, reflectances
be positive[2] and second, in carrying out color correct
white should be preserved[3, 4]. Both assumptions h
been to shown to deliver favourable color correction[4,
Somewhat surprisingly, the constraints of white preser
tion and positivity have, to date, been examined in iso
tion. In this paper we study both constraints together.

We begin by re-examining the white-point preservi
color correction transform. While the idea of preservi
white is a simple one—all we want to do is to get wh
looking right—expressing it and manipulating it math
matically, is somewhat non-trivial[4]. Indeed, the orig
nal mathematical argument is quite complex. Thus, in
first part of this paper we spend considerable effort boil
down the white-preservation argument to a simpler se
equations; an equation set that is easy to implement1.

At a second stage we adopt the maximum ignora
assumption: the idea that all spectra with both posi
and negative power occur with equal likelihood. It is w
known that the MI assumption often simplifies mathema
cal argument[5] and it does so again here. Indeed, we s
that the white-point preserving transform depends on th
’projectors’[6, 7]: the projector for the camera, the proje
tor for white and the projector for the space that is orth
onal to the camera. In contrast, conventional least-squ
involves only the projector for the camera. It is not too im
portant that the reader understands projectors (hopef

1Please look at http://color.derby.ac.uk/ graham/ for an impleme
tion in the S-Plus statistical programming language
cience, Systems, and Applications       47
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those that do will appreciate the elegance of the res
What is important is that the derived expression is ag
very simple to code and implement1; in fact, it is a single
closed form equation.

The MI assumption, useful as it is in simplifying mat
ematical argument, is of questionable value. In particu
the MI assumption accounts for spectra with positive a
negative power. Yet, there is no physical basis for ne
tive power. This discrepancy led Finlayson and Drew
develop the maximum ignorance with positivity assum
tion (MIP)[2]: the assumption that nothing is known abo
the color signals except that they are physically realizea
(everywhere positive).

Preserving white under the conventional MI conditio
improves color correction[3]. So too, does imposing po
tivity when white is not explicitly preserved[2]. One mig
expect that a combined correction transform would deli
better correction still. This is in fact not the case. T
central result of this paper is to prove that the white-po
preserving transforms derived under MI conditions, w
and without positivity, are identical.Preserving white en-
forces positivity.

This result helps to clarify experimental results that
reported in the literature. Hubel et al. have shown tha
white-point preserving transform derived under MI co
ditions without positivity, WPPMI, delivers excellent co
rection performance[8]. That this is so is not surpris
since we now know that Hubel et al. were, albeit im
plicitly, assuming only positive spectra. This result ad
further weight to the proposal, currently under consid
ation by the ISO and IEC technical committees, that
white-point preserving correction transform derived un
MI conditions be made a standard[9].

In the final part of this paper we consider how well w
can expect the WPPMI transform to work given partic
lar camera spectral sensitivities. We answer this ques
by extending the Vora Value a standard measure of fi
goodness[5], to the white preserving case. Here, theis
a difference between the assumptions of MI and MIP. T
Vora Value with positivity, is always substantially great
than that calculated under MI conditions. It follows th
the new measure is more accurate since it is based on
legitimate assumptions about physical spectra

In section 2 of this paper we introduce the white po
preserving color correction transform and examine its
eration under MI assumptions. In section 3, we show t
preserving white, under the MI assumptions, also enfo
positivity. Based on the theoretical development, a n
measure of the colorimetric performance of a color fil
set (for scanners and cameras) is presented in sectio
The paper concludes in section 5.
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4.

2. White-point preserving color correction

LetN be an � 3 matrix of camera RGBs andV a corre-
sponding matrix of XYZs forn color patches. To ease th
mathematics that follows we will assume that the XYZ
are white balanced. That is, if(x; y; z) is the color coordi-
nate induced by a surface and(xw; yw; zw) is the tristim-
ulus for white then(x; y; z) is set to(x=xw ; y=yw; z=zw);
white equals(1; 1; 1). The corresponding camera whit
RGB is denoted by the vectorw

The aim of color correction is to find linear combina
tions of the columns ofN that are as close as possible
the columns ofV . To see how this might be done letv andc
denote ann�1 target vector (one column ofV) and a3�1
coefficient vector (the linear combination to be solved fo
respectively. In standard linear regression, we solve for
coefficient vectorc that minimizes:

I = jN c� vj (1)

wherej:j is the L2 norm (vector length or Root Mean Squa
Error). Using the fact thatjaj = p

a:a (the magnitude of
a is the square root of the dot product ofa with itself), I2

can be written as:

J = I2 = ctN tN c� 2ctN tv + vtv (2)

The c which minimizes (2) is found by differentiatingJ
and equating to the zero vector0:

�J

�c
= 2N tN c� 2N tv = 0 (3)

It follows that

c = [N tN ]�1N tv (4)

Equation (4) is the solution to the least-squares (L
color correction problem. We can in fact solve for all thre
coefficient vectors, that is solve for the X, Y and Z coef
cient mappings together:

C = [N tN ]�1N tV (4a)

C is the3 � 3 matrix that best maps RGBs to XYZs; tha
is, C minimizesjV � NCj.

In white-point preserving color correction we wish t
minimize (1) with the additional constraint that whites a
corrected without error. To see how this is done let us a
a Lagrange constraint term to (2):

J = ctN tN c� 2ctN tv + vtv + �(ctw � 1) (5)

Differentiating with respect to the Lagrange multiplier�
and equating to0 we have:
cience, Systems, and Applications       48
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@J

@�
= ctu� 1 = 0 ) ctw = 1 (6)

Relation (6) tells us that when we find the stationary po
of J we must havectw = 1. This is precisely the conditio
that we need for the white-point preserving minimizat
(remember white for the standard observer is (1,1,1)
white for the camera isw). Differentiating (5) with respec
to c and equating to0:

@J

@c
= 2N tN c� 2N tv + �w = 0 (7)

Taking (6) and (7) together and applying some algeb
manipulation it can be shown that:

c = [N tN ]�1N tv+[N tN ]�1w
(1� wt[N tN ]�1N tv)

(wt[N tN ]�1w)
(8)

It is useful to look at the application ofc to the matrix
of camera responsesN because in doing so we uncov
some useful mathematical structure:

N c =

N [N tN ]�1N tv +N [N tN ]�1w
(1� wt[N tN ]�1N tv)

(wt[N tN ]�1w)
(8a)

The matrixN [N tN ]�1N t is the projector for the spac
spanned by the columns ofN [10]. The projector ofN ,
denotedP (N ), has a number of attractive properties n
least of which is the property that ifx is an arbitraryn-
dimensional vector thenP (N )x is the closest vector in th
space spanned by the columns ofN to x. Other properties
of projectors that we exploit include:Pt = P (symmetry)
andPP = P (idempotency).

Let us choose ann-vectorW such thatN [N tN ]�1w =
P (N )W or in other wordsN tW = w (it is always possi-
ble to make this substitution). The importance of this s
will become clear when we come to examine the maxim
ignorance case. Using this result we rewrite (8a):

N c = P (N )

�
v +W

1�W tP (N )v

W tP (N )W

�
(8b)

The white-point preserving transform taking RGBs
Xs (Ys or Zs) is a simple projection of Xs onto the spa
spanned by the camera measurementsN (this is simply
conventional least squares) plus the projection of some
set term.

Before we can simplify (8b) further we need to co
sider how light and sensor interact in forming a device
sponse. In equation (9)F (�) denotes the spectral sensiti
ity of a device andS(�) a spectrum of light. The integra
over the visible spectrum! defines sensor response:
The Sixth Color Imaging Conference: Color S
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F (�)S(�)d� (9)

whereF (�) represents one of the XYZ color matchin
functions or equally one of the RGB camera color ch
nels. If we represent the continuous functionsF (�) and
S(�) by vectorsF andS of values atm discrete sample
points, then (9) can be rewritten as:

f =

Z
!

F (�)S(�)d� �
mX
i=1

FiSi = F � S (10)

Let them�3 matricesX andR denote color matching
functions and camera sensitivities respectively. By sta
ing then spectra of light in then rows of then�mmatrix
S:

N = SR ; V = SX (11)

Denoting a single column ofX asx and substituting (11)
into (8b):

SRc = P (SR)

�
Sx+W

(1�W tP (SR)Sx)
(W tP (SR)W )

�

(12)
Let us look again at Equation (8a) and the role t

the color signal matrixS plays in the regression. Again
substitutingSR andSX forN andV , we can see that th
following relations hold:

[N tN ]�1N tv = [RtStSR]�1RtStSx
[N tN ]�1 = [RtStSR]�1 (13)

It follows that the white-point preserving fit depends on
on the spectral sensitivities of the camera, the spectral
sitivities of the standard observer and them �m spectral
correlation matrixStS.

Under the conventional MI assumption, all spectra w
bounded power, say in the interval[�1; 1] (at each wave-
length), are deemed equally likely. It can be shown that
corresponding spectral correlation matrix is equal to:

StS = 0:5I (14 MI)

In considering the white-preserving regression, that
can setS = I since in so doing we recreate the requir
MI spectral correlation matrix:ItI = I (note the scalar
0:5 in (14) is not important in the following argument
SubstitutingP (IR) for P (N ) in (8b):

Rc = P (R)

�
x+W

(1�W tP (R)x)

(W tP (R)W )

�
(15)
cience, Systems, and Applications       49
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In (15) the vectorW plays the same role as before thou
here it is anm-vector which, when projected onto the cam
era spectral sensitivities equals the camera response
white. Let us now assume that the camera is balanced
white:

X tU = RtU = (1; 1; 1)t (16)

whereU denotes the spectrum of a perfect white diffus
(an m-vector that is all 1s). Clearly,W must equalU .
Rewriting (15):

Rc = P (R)

�
x+ U

U tx� U tP (R)x

(U tP (R)U )

�
(17)

and this simplifies to:

Rc = P (R)

�
I +

UU t[I � P (R)]

(U tP (R)U )

�
x (18)

In this form, the spectral sensitivities of the color matchi
functions occur only once, and so the R, G and B cam
sensitivities can be considered together:

RC = P (R)

�
I +

UU t[I � P (R)]

(U tP (R)U)

�
X (19)

Equation (19) is really remarkably simple and quite
egant. In the parlance of projectors,P (R) is a projector for
camera spectral sensitivities,I �P (R) is the projector for
the space orthogonal to the camera (the spectra the ca
cannot see) andUU t is proportional to the projector fo
white. In contrast, simple least-squares regression un
MI conditions depends only on theP (R). While (19) is
more complex than conventional linear regression we
lieve it to be simpler, and more intuitive than higher ord
polynomial regression.

The correction transformC is equal to:

C = R+

�
I +

UU t[I � P (R)]

(U tP (R)U )

�
X (20)

whereR+ = [RtR]�1Rt. To convince yourself of this,
note thatRC returns the expression in (19).

3. Preserving white with positivity

The maximum ignorance assumption is flawed becaus
allows spectra to have negative power and this is physic
impossible. To remedy this problem the maximum ign
rance with positivity (MIP) assumption was proposed[
all all-positive spectra are equally likely. Under MIP co
ditions, spectra of light have power at each wavelen
The Sixth Color Imaging Conference: Color 
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chosen uniformly randomly in the interval[0; 1]. The cor-
respondingm�m spectral correlation matrix equals[2]:

StS = (1=4)UU t + (1=12)I (21 MIP)

To ease notation, WPP(R;X ;StS) denotes the white-
point preserving transform that takes cameraR to observer
X for the spectral correlationStS subject to the constrain
that white is preserved.
Theorem: The white point preserving transform derive
under the maximum ignorance with positivity is exact
the same as the white point preserving transform deri
under MI (without positivity) conditions.

WPP(R;X ; 0:5I) = WPP(R;X ; (1=4)UU t+(1=12)I)
Proof Sketch:

1. By definition a white-point preserving transform m
white correctly

2. Any light spectrumS can be written as a linear com
bination of the perfect white diffuserU and a com-
ponent orthogonal to whiteO:

S = �U +O; (O � U = 0)

3. LetP be a linear projector that takes the set of spe
tra stacked in the rows ofS and returns the part o
each spectrum orthogonal toU . ProjectorP mini-
mizes

jSP � Sj; (SPU = 0)

4. After projection byP the spectral correlation matrix
StS is equal toPStSP (becauseP is a projector it
is a symmetric matrix).

5.

WPP(R;X ;StS) = WPP(R;X ;PStSP):

(by definition white is corrected without error)

6.

Pt[(1=4)UU t + (1=12)I]P = (1=12)PP
= (1=12)P:

7.

WPP(�R; �X ;StS) = WPP(R;X ; �2StS) =
WPP(R;X ;StS)
Science, Systems, and Applications       50
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8. Combining 5, 6 and 7, it follows that

WPP(�R; �X ; 0:5I) =
WPP(�R; �X ; (1=12)I) =

WPP(R;X ; [(1=4)UU t + (1=12)I])

4. Preserving white, positivity and filter
goodness

The Vora Value[5] measure of filter goodness quanti
the error between XYZs and corrected RGBs. If cam
RGBs, are stored in then � 3 matrixN and XYZs in a
matrixV and the3� 3 correction transform is denotedC,
the Vora Value equals:

VoraValue = 1� jV �NCj2
jVj2 (22)

As the Vora Value becomes closer to one, so the camer
comes more colorimetric; that is, the camera samples
more like the standard observer. However, one finds
most devices yield Vora Values very close to one (dev
almost always have Vora Values> 0:9) so it is interest-
ing to look at one minus the Vora Value since these va
have greater, device dependent variation (all the varia
is in the difference between 1 and 0.9). The Vora Er
measure is equal to:

VoraError =
jV � NCj2

jVj2 (23)

Equation (23) is simply the sum of squares differen
between XYZs and corrected RGBs normalized by the s
of squared XYZs. In fact Vora and Trussell’s meas
is sometimes more particular than equation (23). Ra
than using XYZ responses themselves, decorrelated c
terparts are often used ( where responses are decorre
through the application of a linear transform). In the t
that follows we will keep XYZs. However, in so doin
we do not lose any generality in our argument (we co
equally well use any basis with the proviso that it is fi
normalized to white).

The white-point preserving Vora Error (WPPVE) is d
fined as:

WPPVE; =
jSX � SRWPP(R;X ;StS)j2

jSX j2 (24)

whereX are the observer curves,R camera spectral sen
sitivities S color signal spectra. Henceforth we substit
C for WPP(R;X ;StS), the numerator of the WPPVE
equal to[5]:

jSX � SRCj2 =
The Sixth Color Imaging Conference: Color S
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trace(X tStSX � 2X tStSRC + CtRtStSRC) (24a)

and the denominator term:

jSX j2 = trace(X tStSX ) (24b)

Notice that the WPPVE depends only on the spec
correlation,StS, of the calibration light spectra. We re
mind the reader that under MI conditions,StS = 0:5I.
Clearly, substituting the identity for the spectral correlat
in (24a) would simplify the equations. However, rath
than substitutingI we substitutePtIP = PtP = P in-
stead. The reader is reminded thatP is the projector or-
thogonal to white (see proof in section 3). We are abl
make this substitution only because our correction tra
form C is white-point preserving. That is, the compon
of any spectrum in the white direction is perfectly co
rected and so we need only consider that part which is
thogonal to white, and so possibly imperfectly correct
in determining our error measure.

jSX � SRCj2 =

0:5 trace(X tPX�2X tPRC+CtRtPRC) � E (25a)

SubstitutingStS = 0:5I in the denominator:

jSX j2 = 0:5 trace(X tX ) � A (25b)

Let us now calculate the WPPVE under MIP con
tions. Remember that the MIP spectral correlationStS =
(1=12)I + (1=4)UU t. Again, rather than substituting th
spectral correlation directly we instead substitute the c
signal orthogonal to white:

P [(1=12)I + (1=4)UU t]P = P [(1=12)I]P = (1=12)P
(26)

Substituting (26) in (24a)

jSX � SRCj2 =

(1=12) trace(X tPX�2X tPRC+CtRtPRC) = (1=6)E
(27a)

Substituting(1=12)I + (1=4)UU t = StS in the denomi-
nator of 24:

jSX j2 = trace(X t[(1=12)I + (1=4)UU t]X ) (27b)

BecauseX tU = 1 (the observer curves are balanc
for white), trace(X tUU tX ) = 1 + 1 + 1. It follows
that (27b) can be rewritten as:

jSX j2 = (1=12)A+ (3=4) (27c)

We can now relate the Vora Error calculated under
and MIP conditions. WPPVEMI equals:
cience, Systems, and Applications       51
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WPPVEMI =
E

A
(28)

whereE andA are scalar quantities defined in (25a
and (25b). The WPPVEMIP equals:

WPPVEMIP =
(1=6)E

(A=6) + (3=4)
(29)

In (28) and (29), the scalarA depends only on the XYZ
sensitivities. For the CIE 1931 2 degree standard obse
curvesA = 0:1271875. Substituting in (29):

WPPVEMI
WPPVEMIP

=
E

0:1271875
(1=6)E

(0:127185=6)+(3=4)

= 36:38084 (30)

The Vora Error calculated under MI conditions whe
white is preserved is always more than 36 times as la
as when MIP conditions are used. That is, assuming that
spectra with negative power occur with equal likelihoo
as all positive spectra, when in fact they can never occ
leads to an error measure which is much larger and so m
pessimistic than it ought to be.

5. Conclusion

Much research in color correction is polarized: either o
assumes that nothing is known about the colors one w
see or everything is assumed to be known. We believe t
neither viewpoint is justified: something is always know
both about the spectra we will see—they are always
positive—and about the colors we must correct with lo
error—it is imperative that white looks right. The assum
tions of positivity and white-preservation are natural r
laxations of the respective positions of total ignorance a
total prescience and their adoption has led to improv
correction[3, 8]. However, because these ideas have p
viously been studied in isolation we studied them togeth
in this paper.

We proved a surprising and counterintuitive result: th
is no benefit from preserving white and enforcing positi
ity since the step of preserving white implicitly enforce
positivity. We believe the proof of this result is quite im
portant: not only does it help us understand color corre
tion per se but it also helps to explain color correction r
sults reported in the literature. Previous work have sho
that the constraints of positivity and preserving white le
to very similar correction performance[8] and now we kn
that this is as it should be. Moreover, our theoretical arg
ment is used to develop a modified Vora Value measure
filter goodness. The Vora Value measure is a single fi
ure of merit which is commonly used to assess the co
correctability of a color device. We show that when whi
The Sixth Color Imaging Conference: Color 
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is preserved, this measure is conservative. It always, b
large constant margin, underestimates color correctab
A new more accurate measure is proposed.
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