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1. Introduction

Abstract Color correction, mapping device RGBs to XYZs, is a cen-

It is commonplace to use & x 3 linear transform to  tral problem in color imaging[1]. After many years of re-
map device RGBs to XYZs. Two particular types of trans-search, standardized correction methods are evolving. In
forms have been developed based on the assumptions tHg domain of digital cameras, the standard method in-
we either maximally ignorant or maximally prescient aboutvolves transforming RGBs to XYZs using the ‘appropri-
the world. Under the maximum ignorance assumption, itisate’ linear transform. The definition of ‘appropriate’ de-
assumed that nothing is known about the spectral statistigdends on the assumptions that are made when deriving
of the world and so the best correction transform is the onéhe transform. Recently, two weak, and so easily justifi-
that maps device spectral sensitivities so they are as clogble, assumptions have emerged. First, reflectances must
to observer sensitivities as possible. Under maximum prebe positive[2] and second, in carrying out color correction
science, we know the spectral statistics that we will ob-white should be preserved[3, 4]. Both assumptions have
serve and so the maximally prescient transform maps, witeen to shown to deliver favourable color correction[4, 2].
minimum error, the RGBs (that we know we will see ) onto Somewhat surprisingly, the constraints of white preserva-
corresponding XYZs. In general the two assumptions leadion and positivity have, to date, been examined in isola-
to quite different color corrections. tion. In this paper we study both constraints together.

In previous work we have argued against total igno- e begin by re-examining the white-point preserving
rance or prescience and have instead developed Compr@0|0r correction transform. While the idea of preserving
mise transforms. Our work is based on two observationgvhite is a simple one—all we want to do is to get white
First, one is never completely ignorant about the world—looking right—expressing it and manipulating it mathe-
color signal spectral power distributions are everywhere almatically, is somewhat non-trivial[4]. Indeed, the origi-
positive. Second, it is accepted that it is much more impornal mathematical argument is quite complex. Thus, in the
tant to correct some colors than other. In particular, whitefirst part of this paper we spend considerable effort boiling
is central to color vision and color imaging, so it is imper- down the white-preservation argument to a simpler set of
ative that white should always look right. equations; an equation set that is easy to impletnent

However, to date these two compromise solutions have At & second stage we adopt the maximum ignorance
been studied in isolation. Surely, it would be advanta-assumption: the idea that all spectra with both positive
geous to combine the constraints of whiteness and posgnd negative power occur with equal likelihood. Itis well
t|V|ty’) In fact we show that this is not the case: by pre- known that the Ml aSSUmption often S|mp||f|e3 mathemati-
serving white we enforce positivity. This is an important cal argument[5] and it does so again here. Indeed, we show
result. Not only does it add to our understanding of colorthat the white-point preserving transform depends on three
correction, but it helps explain color correction results pub-Projectors’[6, 7]: the projector for the camera, the projec-
lished in the literature (the assumptions of positivity andtor for white and the projector for the space that is orthog-
white-preservation lead to very similar results). Moreover,0hal to the camera. In contrast, conventional least-squares
it helps us to derive a new measure for assessing the gootivolves only the projector for the camera. Itis not too im-
ness (color correctability) of camera sensors that is strictlyportant that the reader understands projectors (hopefully,
less pessimistic (and more accurate) than the existing Vora 1Please look at http:/color.derby.ac.uk/ graham/ for an implementa-
Value. tion in the S-Plus statistical programming language
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those that do will appreciate the elegance of the result). 2. White-point preserving color correction
What is important is that the derived expression is again

very simple to code and impleménin fact, it is a single Let\ be an x 3 matrix of camera RGBs and a corre-
closed form equation. sponding matrix of XYZs forn color patches. To ease the

. o mathematics that follows we will assume that the XYZs
The Ml assumption, useful as itis in simplifying math- 4e \hite balanced. That is, (i, y, ) is the color coordi-

ematical argument, is of questionable value. In particular, oo induced by a surface afichy, yu, zu) is the tristim-
. . . Jy JWH FW
the MI assumption accounts for spectra with positive anq,| ;s for white ther(z, y, 2) is SELLO(2/ T,y /Y, 2/ 20

negative power. Yet, there is no physical basis for negag hite equals(1,1,1). The corresponding camera white
tive power. This discrepancy led Finlayson and Drew t0pGR is denoted by the vectar

develop the maximum ignorance with positivity 8Ssump- e aim of color correction is to find linear combina-
tion (MIP)[2]: the assumption that nothing is known aboutyjo s of the columns of\” that are as close as possible to
the color signals except that they are physically realizeabl@ne columns ob. To see how this might be done teandc

(everywhere positive). denote am x 1 target vector (one column of) and a3 x 1

Preserving white under the conventional MI conditionscoefficient vector (the linear combination to be solved for)
improves color correction[3]. So too, does imposing posi-"éspectively. In standard linear regression, we solve for the
tivity when white is not explicitly preserved[2]. One might coefficient vector that minimizes:
expect that a combined correction transform would deliver
better correction still. This is in fact not the case. The I = |[Nc—v (1)
central result of this paper is to prove that the White-pointW
preserving transforms derived under Ml conditions, with
and without positivity, are identicaPreserving white en-
forces positivity

here|.| is the L. norm (vector length or Root Mean Square
Error). Using the fact thaju| = /a.a (the magnitude of
a is the square root of the dot productovith itself), I?
can be written as:

This result helps to clarify experimental results that are
reported in the literature. Hubel et al. have shown that a J =1 = N Ne— 2Nty + vl (2)
white-point preserving transform derived under Ml con-
ditions without positivity, WPPMI, delivers excellent cor-
rection performance[8]. That this is so is not surprising
since we now know that Hubel et al. were, albeit im- 5.7 . .
plicitly, assuming only positive spectra. This result adds 5o = 2N'Ne-2N'v =0 (3)
further weight to the proposal, currently under consider- -
ation by the 1ISO and IEC technical committees, that thdt follows that
white-point preserving correction transform derived under
MI conditions be made a standard[9]. c = VNNt (4)

The ¢ which minimizes (2) is found by differentiating
and equating to the zero vectar

In the final part of this paper we consider how wellwe  Equation (4) is the solution to the least-squares (LS)
can expect the WPPMI transform to work given particu-color correction problem. We can in fact solve for all three
lar camera spectral sensitivities. We answer this questioBoefficient vectors, that is solve for the X, Y and Z coeffi-
by extending the Vora Value a standard measure of filtegient mappings together:
goodness[5], to the white preserving case. Here, tlsere
a difference between the assumptions of Ml and MIP. The C = VNNV (4a)
Vora Value with positivity, is always substantially greater
than that calculated under MI conditions. It follows that C is the3 x 3 matrix that best maps RGBs to XYZs; that
the new measure is more accurate since it is based only df C minimizes|V — N'C|.

|egitimate assumptions about physica' spectra In White-point preserVing color correction we wish to
minimize (1) with the additional constraint that whites are

In section 2 of this paper we introduce the white pointcorrected without error. To see how this is done let us add
preserving color correction transform and examine its 0py | agrange constraint term to (2):

eration under Ml assumptions. In section 3, we show that

preserving white, under the Ml assumptions, also enforces

positivity. Based on the theoretical development, a new J = NN — 2 Niw + vl + A(dw — 1)  (5)
measure of the colorimetric performance of a color filter

set (for scanners and cameras) is presented in section Bifferentiating with respect to the Lagrange multiplier
The paper concludes in section 5. and equating t@ we have:
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aJ ¢ . ¢ B
oy —cu-1l=0=cw=1 (6) f= /WF(A)S(A)dA 9)

Relation (6) tells uts that When we find'the stationary POi”twhereF(A) represents one of the XYZ color matching
of J we must have’w = 1. This is precisely the condition - ¢,nctions or equally one of the RGB camera color chan-
that we need for the white-point preserving minimization nais. |t we represent the continuous functidié\) and

(remember white for the standard observer is (1,1,1) ang;()\) by vectorsE andsS of values atm discrete sample
white for the camera ig). Differentiating (5) with respect points, then (9) can be rewritten as:

to ¢ and equating t@:

oJ
o = INtN e — 2N+ w =0 (7) f = /F()\)S()\)d/\ ~ ZFiSi =F-S (10

Taking (6) and (7) together and applying some algebraic
manipulation it can be shown that: Let them x 3 matrices¥ andR denote color matching

functions and camera sensitivities respectively. By stack-
1 — w VAT A ) ing then spectra of light in the, rows of then x m matrix

(w! VN w)

(8) _ _
It is useful to look at the application efto the matrix N =8R , V=25% (1)
of camera response¥ because in doing so we uncover Denoting a single column ot asz and substituting (11)

c = [Nt./\/’]il./\/ty-}-[ tN]flw(

some useful mathematical structure: into (8b):
Ne = ¢
(1-w P(SR)S@)
ETASEAST—L ALt SRc = P(SR <S_+E
N[NtN]letg_i_N[NtN]flw(l w'| A/], N'tv) ¢ (SR) L (wtp(sn)w)
(! NIN]  w) (12)

_ o _ 8a) Let us look again at Equation (8a) and the role that
The matrix VNN N is the projector for the space the color signal matrixS plays in the regression. Again,

spanned by the columns 8f[10]. The projector of\,  sypstitutingSR andSA’ for A" and), we can see that the
denotedP (), has a number of attractive properties noto|lowing relations hold:

least of which is the property that if is an arbitraryn-
dimensional vector theR(N)z is the closest vector in the

space spanned by the columns\éto z. Other properties VN Ny = [RIS'SR] RIS Sz

of projectors that we exploit includ@®? = P (symmetry) o ‘ot .

andPP = P (idempotency). WNTT = [RIS'SR] (13)
Letus choose an-vectorW such thatV[N*A]~'w = |t follows that the white-point preserving fit depends only

P(N)W or in other wordsV*W. = w (it is always possi-  on the spectral sensitivities of the camera, the spectral sen-

ble to make this substitution). The importance of this stepsitivities of the standard observer and thex m spectral
will become clear when we come to examine the maximunygorrelation matrixStS.

ignorance case. Using this result we rewrite (8a): Under the conventional Ml assumption, all spectra with
bounded power, say in the intenfat1, 1] (at each wave-
v N 1—W!P(N) length), are deemed equally likely. It can be shown that the
=P +W—— 8b i i iXi :
c (W) (2 WP ) (8b) corresponding spectral correlation matrix is equal to:
The white-point preserving transform taking RGBs to S'S =0.57 (14 Ml)

Xs (Ys or Zs) is a simple projection of Xs onto the space
spanned by the camera measuremevtgthis is simply
conventional least squares) plus the projection of some o

set term. . . ; : )
L 0.5 in (14) is not important in the following argument).
Before we can simplify (8b) further we need to con- SubstitutingP(ZR) for P(A') in (8b):

sider how light and sensor interact in forming a device re-
sponse. In equation (F() denotes the spectral sensitiv-

ity of a device andS(\) a spectrum of light. The integral .
over the visible spectrum defines sensor response: Re = P(R) (z+W

In considering the white-preserving regression, that we
gean setS = 7 since in so doing we recreate the required
MI spectral correlation matrixZ!Z = 7 (note the scalar

(1-W'P(R)z)
W PRW) ) (15)
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In (15) the vectoi¥ plays the same role as before thoughchosen uniformly randomly in the interv@@, 1]. The cor-
here it is anm-vector which, when projected onto the cam- respondingn x m spectral correlation matrix equals[2]:
era spectral sensitivities equals the camera response for

white. Let us now assume that the camera is balanced for .
white: S'S = (1/4)UU" + (1/12)T (21 MIP)

trr  otrr ‘ To ease notation, WPR( X', StS) denotes the white-
YU =RU = (L,L1) (16) point preserving transform that takes canf@re observer
whereU denotes the spectrum of a perfect white diffuserX’ for the spectral correlatiofi‘S subject to the constraint

(an m~vector that is all 1s). Clearhi¥ must equall.  that white is preserved.

Rewriting (15): Theorem The white point preserving transform derived
under the maximum ignorance with positivity is exactly
the same as the white point preserving transform derived

(17) under MI (without positivity) conditions.

and this simplifies to: WPRR, X,0.5) = WPRR, X, (1/4)UU" +(1/12)T)

Proof Sketch:

Re = P(R) <I+ w) z

UPRD) 18

1. By definition a white-point preserving transform maps

. N ) white correctly
In this form, the spectral sensitivities of the color matching

functions occur only once, and so the R, G and B camera 2. Any light spectrunfl can be written as a linear com-
sensitivities can be considered together: bination of the perfect white diffuséf and a com-
ponent orthogonal to whit@:

(19) S=alU+0, (0-U=0)

RC = P(R) <I+ M)

U'P(R)U)
3. LetP be alinear projector that takes the set of spec-
tra stacked in the rows & and returns the part of
each spectrum orthogonal 6. ProjectorP mini-

mizes

Equation (19) is really remarkably simple and quite el-
egant. In the parlance of projectof3(R) is a projector for
camera spectral sensitivities;— P(R) is the projector for
the space orthogonal to the camera (the spectra the camera
cannot see) andU" is proportional to the projector for
white. In contrast, simple least-squares regression under ISP =S|, (SPU=0)
MI conditions depends only on thB(R). While (19) is
more complex than conventional linear regression we be-
lieve it to be simpler, and more intuitive than higher order
polynomial regression.

4. After projection byP the spectral correlation matrix
StSis equal taPStSP (becauseéP is a projector it
is a symmetric matrix).

The correction transfortd is equal to: 5.
B (I N UU'[T - P(R)]> 20) WPRR, X, S'S) = WPR(R, X, PS'SP).
U'P(R)U)
whereR+ = [RIR]~'R!. To convince yourself of this, (by definition white is corrected without error)
note thatRC returns the expression in (19). 6.
. . . . t t _
3. Preserving white with positivity PHA/AUL + (1/1IP = (1/12)PP
The maximum ignorance assumption is flawed because it = (1/12)P.
allows spectra to have negative power and this is physically 7.
impossible. To remedy this problem the maximum igno-
rance with positivity (MIP) assumption was proposed[2]: WPRaR,aX,StS) = WPAR, X, a’StS) =
all all-positive spectra are equally likely. Under MIP con- .
ditions, spectra of light have power at each wavelength WPRR, X, S"S)
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8. Combining 5, 6 and 7, it follows that trace X' S'SX — 2X'S'SRC + C'RIS'SRC)  (24a)
WPRaR, aX,0.5T) = and the denominator term:
WPRaR,aX, (1/12)T) = |SX|? = tracgX'S'SX) (24b)
WPRR, X, [(1/4)UU" + (1/12)Z]) Notice that the WPPVE depends only on the spectral
correlation,StS, of the calibration light spectra. We re-
4. Preserving White’ pos|t|v|ty and f||ter mind the reader that under Ml Conditionng = 0.57.
goodness Clearly, substituting the identity for the spectral correlation

in (24a) would simplify the equations. However, rather
The Vora Value[5] measure of filter goodness quantifieghan substituting we substituteP’ZP = P'P = P in-
the error between XYZs and corrected RGBs. If camergtead. The reader is reminded thais the projector or-
RGBs, are stored in the x 3 matrix A" and XYZs in a  thogonal to white (see proof in section 3). We are able to
matrix V and the3 x 3 correction transform is denotel make this substitution only because our correction trans-
the Vora Value equals: form C is white-point preserving. That is, the component
of any spectrum in the white direction is perfectly cor-
rected and so we need only consider that part which is or-
thogonal to white, and so possibly imperfectly corrected,
ermining our error measure.

|V — NC|?
VI?

As the Vora Value becomes closer to one, so the camera b&! det
comes more colorimetric; that is, the camera samples light )
more like the standard observer. However, one finds that [S¥ = SRCF =
most devices yield Vora Values very close to one (devices (.5 trace X'PX —2X'PRC+CIRIPRC) = E (25a)
almost always have Vora Values 0.9) so it is interest- e , , _
ing to look at one minus the Vora Value since these valueSubstitutingS*S = 0.5 in the denominator:
have greater, device dependent variation (all the variance

VoraValue = 1 (22)

is in the difference between 1 and 0.9). The Vora Error [SXJ* = 0.5 tracg(A"X) = A (250)
measure is equal to: Let us now calculate the WPPVE under MIP condi-
Nep tions. Remember that the MIP spectral correlatfdls =
VoraError — Y~V (23)  (1/12)T + (1/49)UU". Again, rather than substituting the
V|2 spectral correlation directly we instead substitute the color

Equation (23) is simply the sum of squares differencessignal orthogonal to white:
between XYZs and corrected RGBs normalized by the sum
of squared XYZs. In fact Vora and Trussell's measure .
is sometimes more particular than equation (23). Rather”[(1/12)T + (1/4)UUTP = P[(1/12)I]P = (1/12)P
than using XYZ responses themselves, decorrelated coun- o ] (26)
terparts are often used ( where responses are decorrelatgPstituting (26) in (24a)
through the application of a linear transform). In the text

that follows we will keep XYZs. However, in so doing [SX — SRC” =
we do not lose any generality in our argument (we could(l/lg) trace( X' PX —2X"PRCH+CIRIPRC) = (1/6)E
equally well use any basis with the proviso that it is first (27a)
normalized to white). Substituting(1/12)Z + (1/4)UU* = S*S in the denomi-
The white-point preserving Vora Error (WPPVE) is de- nator of 24:
fined as:
2 |ISX|? = trace(X*[(1/12)T + (1/4)UU'|X) (27b)

_ t
ISX — SRWPR(R, X, StS) (24

|SX|? BecauseY‘U = 1 (the observer curves are balanced
for white), trace(X*UU'X) = 1+ 1 + 1. It follows
that (27b) can be rewritten as:

WPPVE =

whereX’ are the observer curveR, camera spectral sen-
sitivities S color signal spectra. Henceforth we substitute
C for WPR'R, X, StS), the numerator of the WPPVE is

equal to[5]: |ISX|)? = (1/12)A+ (3/4) (27¢)
We can now relate the Vora Error calculated under Ml
|SX — SRC|? = and MIP conditions. WPPVEMI equals:
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is preserved, this measure is conservative. It always, by a
WPPVEMI| = E (28) large constant margin, underes'Fimates color correctability.
A new more accurate measure is proposed.
whereE and A are scalar quantities defined in (25a)

and (25b). The WPPVEMIP equals: Acknowledgment
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