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Abstract

Sensor sharpening has been proposed as a method for
improving color constancy algorithms but it has not been
tested in the context of real color constancy algorithms. In
this paper we test sensor sharpening as a method for
improving color constancy algorithms in the case of three
different cameras, the human cone sensitivity estimates, and
the XYZ response curves. We find that when the sensors are
already relatively sharp, sensor sharpening does not offer
much improvement and can have a detrimental effect.
However, when the sensors are less sharp, sharpening can
have a substantive positive effect. The degree of
improvement is heavily dependent on the particular color
constancy algorithm. Thus we conclude that using sensor
sharpening for improving color constancy can offer a
significant benefit, but its use needs to be evaluated with
respect to both the sensors and the algorithm.

Introduction

Sensor sharpening has been proposed as a method for
improving color constancy algorithms [1], but it has not
been tested in the context of real color constancy algorithms.
Rather, the experimental results available are limited to the
minimum error possible with and without sharpening. Since
the error in current color constancy methods is often
substantially larger than the minimum error possible, we
felt it necessary to investigate further the utility of sensor
sharpening for color constancy. In this paper we provide
results of color constancy with and without sharpening for a
Sony DXC-930 CCD video camera, a Kodak DCS-200
digital camera [2], a Kodak DCS-420 digital camera [2], the
XYZ response curves [3], and the Vos and Walraven human
cone sensitivity estimates [3]. The general conclusion is that
when the sensors are already relatively sharp (e.g. the Sony
camera), further sensor sharpening is not worth the trouble,
and often has a small detrimental effect. However, when the
sensors are not sharp (e.g. the DCS-200 and DCS-420),
sensor sharpening can have a substantial positive effect,
depending on the algorithm, thus validating the original
work.

Sensor Sharpening

We begin with an explanation of sensor sharpening [1].
The motivation for sensor sharpening is the observation that
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most color constancy algorithms make use of a diagonal
model of illumination change. To understand this model,
consider a white patch under two different illuminants.
Suppose that under the first illuminant the color is [r,g,b]
and under the second illuminant the color is [r’, g’, b’]. It is
possible to map the color of white under the first illuminant
to the color under the second by post-multiplication by a
diagonal matrix: [r’, g’, b’] = [r, g, b] diag(r’/r, g’/g, b’/b). If
the same diagonal matrix transforms the RGB of all surfaces
(not just the white ones) to a good approximation, then we
say that we have a diagonal model of illumination change. It
turns out that the accuracy of the approximation is a
function of the vision system’s sensors.

The idea of sensor sharpening is to map the data by a
linear transform T into a new space where the diagonal
model holds more faithfully. Colour constancy algorithms
which rely on the diagonal model can then proceed more
effectively. The final result is then mapped back to the
original RGB space with the inverse transformation.
Working in the transform space is like having new sensors
which are a linear transformations of the old ones. Further,
the sensitivity functions of sensors which support the
diagonal model tend to look sharper with narrower peaks
than ones that do not—in the extreme case, if the sensors are
delta-functions, the diagonal model holds exactly. From
these two observations, we get the name: sensor sharpening.

The main technical result in sensor sharpening is
finding the transformation T. In [1], Finlayson et al propose
three methods for finding T: “sensor based sharpening”,
“database sharpening”, and “perfect sharpening”. For this
work we chose database sharpening over sensor based
sharpening due to the clean correspondence between the
sharpening method and a color constancy error metric.
Perfect sharpening did not work well for us because our test
illuminant set did not meet the key requirement of being
two-dimensional, partly due to the inclusion of fluorescent
lights.

In database sharpening, RGB are generated using a
database of reflectance spectra, together with an illuminant
spectrum and the sensors. This is done for two separate
illuminants. Let A be the matrix of RGB for the first
illuminant and B be the matrix for the second, with the
RGB’s placed row-wise. In the sharpening paradigm we map
from B to A with a sharpening transform, followed by a
diagonal map, followed by the inverse transform. If we
express each transform by post multiplication by a matrix
we get: A ≈ BTDT–1 In database sharpening the matrix T
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(and implicitly D) is found that minimizes the RMS error,
|A ≈ BTDT–1|2. The sharpening transform gives exactly the
same error as the best linear transform M. In fact, T is found
by diagonalizing M, where M minimizes ||A – BM||2.

One implementation issue should be noted. The result
of the diagonalization is ambiguous up to scaling and
swapping of the columns of T. As is standard, we use
columns of norm 1. Furthermore, we put the element of T
of largest absolute value on the diagonal by swapping
columns, and ensure that it is positive by multiplying the
column by -1 if necessary. Then in a similar way we
attempt to make the other diagonal elements as large as
possible. This procedure is used to reduce the number of
negative components of sharpened data.

In this work we view color constancy as finding a
transformation from the image of a scene taken under an
unknown illuminant, to the image of the same scene as
though it were taken under a known, “canonical”, illuminant
[4]. A priori, the nature of the transformation is open, but
most algorithms find a diagonal transform, and it is these
algorithms which interest us here. Of course, the best linear
transformation will give at most the same error as any
diagonal transformation, but it should be clear from the
above that the generalized diagonal transform TDT−1 gives
us a chance of having this lower error with a diagonal model
[5]. Thus we should be able to improve diagonal color
constancy if the right sharpening transform is available.

For the first part of our work we estimate upper bounds
for improvement with sharpening by giving the algorithms
the appropriate T. Here T is computed assuming that we can
correctly “guess” the illuminant spectrum. It should be noted
that such an upper bound depends on the assumption that
sharpening works with, or at least not against, the specific
algorithm. When the sensors are already sharp, it is more
likely that the breakdown of this assumption becomes
noticeable because a smaller portion of the error is due to the
lack of sharpness. Thus with sharp sensors, using this
“optimal” sharpening often gives worse results than not
using sharpening at all.

For the real color constancy problem, we do not know
the illuminant spectra used above to compute T. We have
experimented with first running the algorithms in non-sharp
space to estimate the illuminant, and then using this
estimate to help choose T. However, we have not yet found
much benefit of this strategy over simply using the average
of all the illuminants in the database as the sharpening
illuminant. Specifically, our work suggests that when
sharpening is beneficial for real color constancy algorithms,
all reasonably chosen T work similarly. However, in the
case of the comparison “algorithm” which uses the actual
illuminant (unknown to the real algorithms) the only source
of error is the diagonal model approximation, and the
optimal sharpening is significantly better.

Colour Constancy Algorithms

We will now discuss briefly the color constancy
algorithms investigated here. The first algorithm is based on
a gray world assumption. It assumes that the average RGB
of a scene under a given illuminant is that of “gray”, where
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gray is defined as the average of the entire reflectance
database. The implied diagonal map is the ratio of the
known RGB of gray under the canonical illuminant, to the
RGB of gray under the test illuminant, estimated by the
average of the scene RGB. This algorithm performs very
well in our experimental context, as the assumption is
statistically valid here, but it should be noted that this
algorithm does not do nearly as well on real images because
in this context the average reflectance is not generally
known [6].

The second algorithm is based on the Retinex model of
human vision [7, 8, 9]. The result is computed using the
maximum in each channel as an estimate of the color of
white under the test illuminant. Similar to the gray world
algorithm, the implied diagonal map is the ratio of the
known color of white under the canonical illuminant to the
estimate.

The gamut mapping approaches introduced by Forsyth
[4] directly estimate the diagonal map from a set of possible
maps. The possible maps can be constrained by considering
scene RGB [4], and insisting on plausible illuminants [10].
Given a set of possible RGB, a solution needs to be chosen
from this set. One method for doing so is maximizing the
volume of the convex hull of the mapped RGB [4]. A
second method is to take the centroid of the convex hull of
the maps [11, 12].

Each color constancy algorithm relates to sharpening
transforms differently. For example, Forsyth’s CRULE
algorithm [4] and Finlayson’s extended version for
chromaticity [10] rely heavily on the diagonal model, and are
likely candidates for improvement by the use of sharpening.
At the other extreme, gray world algorithms are not much
affected by sharpening. Finally, for the variant of Retinex
used here, the relationship of the algorithm design to
sharpening is unclear, as the maximum in each channel
intuitively estimates white in RGB space, but its choice as
an estimator in sharp space is less clear. Similar
considerations are also relevant in analyzing methods for
choosing a solution from the constraints sets found with
gamut mapping algorithms.

Additional problems can occur with the gamut mapping
algorithms due to negative RGB which can be introduced by
sharpening. Depending on the variant of the algorithm, it
may or may not be problematic to have negative
components in the sharpened input data, canonical data, or
illuminant database data. We found that the chromaticity
version of Forsyth’s method [10] is very sensitive to these
problems, and therefore we do not include results for it. In
the case of the RGB variants used below, a few of the
illuminants cause trouble; in the context of an application,
one could default back to non-sharp computation. However,
for the purposes of testing we simply exclude that generated
scene from the test, thus ensuring that all algorithms are run
on the same data.

Results

We have investigated sensor sharpening in the case of a
Sony DXC-930 CCD video camera, a Kodak DCS-200
digital camera [2], a Kodak DCS-420 digital camera [2], the
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XYZ response curves [3], and the Vos-Walraven human cone
sensitivity estimates [3]. As our main interest here is
machine vision and image reproduction, we are most
interested in the results for the cameras. However,
sharpening is also of interest in relation to human vision[1].

A sampling of our results is shown in Table 1. The data
was used was generated from a test set of 100 measured
illuminants (normalized to be the same magnitude), a
database of roughly 2000 reflectances, and the 5 different
sensors. The 100 measured illuminants include a variety of
indoor and sources and outdoor illumination, as well as a
complex combinations thereof obtained at random locations
in and around our university campus. We note that the
results of sharpening are a function of the spectra databases;
our data sets were chosen to be as general as possible.

As discussed above, the result of each algorithm can be
interpreted as supplying a mapping from unknown
illuminant images to canonical ones. To obtain the errors
presented here, we applied that mapping to a large set of
RGB computed using the entire reflectance database, together
with the test illuminant and the sensors. We then computed
a similar set using the canonical illuminant, which was
chosen to be a Tungsten illuminant, and tabulated the RMS
difference of the two sets. This error metric was chosen to
coincide with the error which database sharpening strives to
reduce. Lack of space prevents us from providing errors
using other metrics.

Each entry in the table is the average of 600 results.
The first five rows in the two tables are target results. The
first row is the best linear fit (which is also the best
diagonal fit with optimal database sharpening), the second is
the best diagonal fit, the third is the result of “knowing” the
RGB of the illuminant, the forth is the same with optimal
database sharpening, and the fifth is the same with
sharpening using the global average illuminant. Following
the target results are the results of several algorithms
estimating the best diagonal map on the basis of 8 randomly
chosen data points.

The “sharpness” of the sensors can be taken as the
relative magnitudes of the best linear fit and the best
diagonal fit. The results below indicate that sharpening the
already “sharp” DXC-930 sensors is troublesome at best.
However, in the case of the less sharp DCS-200 and DCS-
420 sensors, sharpening can give a substantial
improvement, as is the case with the E-CRULE-HA
algorithm. For example, with the DCS-200, average
illuminant based sharpening reduces the error of E-CRULE-
HA from 81.3 to 33.0. E-CRULE-HA is better tuned than
E-CRULE-MV for both the data set and the error metric, and
thus the difference between the two algorithms in the case of
sharp sensors is not surprising. However, it is interesting to
note that in the case of the DCS-200 and DCS-420 sensors,
sharpening was required to obtain the advantages of this
algorithm in this situation. In summary, the results indicate
that the benefit of sharpening is quite dependent on the
algorithm, which is understandable based on the discussion
above, but the magnitude of the effect is still surprisingly
large.

In Table 1 we exclude results for the cone sensitivity
estimates. Most algorithms did not work well in the sharp
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space for these sensors. Only the comparison algorithms and
the gray world algorithm gave reasonable results. With these
sensors, the sharpened RGB typically had negative R and G.
This almost always made the gamut mapping approach
untenable, and also made the Retinex algorithm perform
very poorly.

Finally, we note that when sharpening is beneficial for
the real color constancy algorithms, using the global average
illumination for sharpening is not much worse than the
optimal. On the other hand, in the case of the known
illuminant “algorithm”, optimal sharpening gives
substantially better results (relative to the already small
error) than average illuminant sharpening. This suggests that
as color constancy improves, the method of choosing the
sharpening transform becomes more relevant. However,
when we ran some of the experiments again with the
number of surfaces increased to 32 in order to improve color
constancy, the advantage of using the optimal sharpening
was still slight, even though the RMS error for some of the
algorithms was less than 20.

Table 1. Mapping Error vs. Algorithm

DXC
930

DCS
200

DCS
420

XYZ

Linear Fit 2.88 1.32 1.67 2.04
Diagonal Fit 4.42 8.48 10.7 9.79

Known Illum. 4.53 8.91 11.2 10.6
Known Illum. (opt) 2.99 1.33 1.68 2.07
Known Illum. (ave) 3.90 1.63 2.02 3.00

Gray World 44.5 39.8 39.0 40.3
Gray World (opt) 45.8 41.4 40.5 42.9
Gray World (ave) 45.5 41.3 40.4 43.4

Retinex 146 112 120 123
Retinex (op) 144 102 111 114
Retinex (ave) 143 102 111 113

E-CRULE-MV 74.3 69.8 66.0 52.4
E-CRULE-MV (opt) 73.2 58.1 60.9 57.7
E-CRULE-MV (ave) 72.0 57.3 60.4 55.6

E-CRULE-HA 35.8 81.3 80.5 39.2
E-CRULE-HA (opt) 36.4 33.0 33.7 33.2
E-CRULE-HA (ave) 37.6 33.4 34.2 35.5

Table 1: RMS mapping error between the full data set under the
unknown illuminant and the canonical illuminant. The (opt)
results are for database sharpening using the unknown
illuminant. The (ave) results are for database sharpening using
the global average illuminant spectra. No designation in the
second column is used for no sharpening. The E-CRULE
algorithms are based on Forsyth’s CRULE algorithm [4], but are
extended with Finlayson’s illumination constraint [10]. The
(MV) variant uses the original “maximum volume” method to
chose the final answer from the constrained set, whereas the
(HA) variant uses the average. Note that the experimental
conditions are optimal for the gray world, since the average of
the test data base is known and used. Similarly, the E-CRULE-
HA results are somewhat optimistic, although not to the same
degree as the gray world results. The maximum variability of the
numbers between successive runs is estimated to be 5%.
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Conclusion

Sensor sharpening can have a substantive positive effect
on color constancy processing, but this is highly dependent
on the both sensors and the algorithm used. Furthermore,
some sensor/algorithm combinations are either unusable, or
yield very poor results, due to the introduction of negative
data values into the data from sharpening. Thus using
sharpening for improving color constancy algorithms
requires care.

On a more positive note, our results suggest that in the
context of real color constancy algorithms, the method of
sharpening is not very critical. We expected that using the
somewhat ad hoc sharpening method based on the average
illuminant would be distinctly worse than the optimal
method based on the actual illuminant (not normally
available). However, we did not find much difference
between the two. Nonetheless, the potential advantage of the
optimal method is clear from the results of the comparison
algorithm based on the actual illuminant. Thus we feel that
further research into the choice of sharpening method is
warranted. Finally, in some cases, the dependence on the
algorithm greatly exceeded our expectations, and additional
work towards understanding the relationship between sensor
sharpening and color constancy algorithms is also needed.
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