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Abstract
In thispaper wepresent amultiscalecolor appearancemode
which simulates luminance, pattern and color processing
of the human visual system to accurately predict the color
appearance attributes of spectral stimuli in complex sur-
roundingsunder a wide rangeof illumination and viewing
conditions.

1. Int roduction

The aim of a color appearance model is to predict vari-
ous visual phenomenawhich simple tristimulus colorime-
try can not adequately describe. Colorimetry simply pre-
dictswhether two visual stimuli of different spectral power
distributionswil l match in color when viewed under iden-
tical visual conditions. This matching is defined by the
spectral responsivities of the photoreceptors in the visual
system. If the signals from the three cone types are equal
for two visual stimuli, then they match in color when seen
in the sameconditions.

The amplitude of visual stimuli that we encounter in
natural scenes is vast. While the responsive range of the
visual photoreceptorsis small, thevisual system functions
over this vast range with reasonable ease. It is believed
that visual system adapts to thewidely varying amplitudes
of visual stimulus by adaptive gain control . This mecha-
nism controls the relationship between the photoreceptor
signals and the amplitude of spectral stimulus, by turning
down thegain when thestimulusamplitudeis high and by
turning up the gain when the stimulus amplitude is low.
The gain control is independent for the different type of
photoreceptorsand hence explains the visual system’s ca-
pability to adjust to both wide ranges of illumination and
varying colors of illumination in order to approximately
preserve the appearance of the object colors. The non-
linear behavior of thesemechanismsresults in theincrease
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in colorfulness(Hunt effect) and increase in apparent con-
trast (Stevenseffect) with increasing illumination. Most of
the color appearance models [Hunt95,Fairchild98] avail-
abletoday incorporatesomeform of adaptivegain control.

It is also known that the appearance of a visual stim-
ulus depends not only on the stimulus itself but also on
theother stimuli that arenearby in space. Thespatial con-
figuration of the viewing field seems to play a critical im-
portance in the perceived appearance of a stimulus. In-
duction, crispening, and spreading arethreeimportant and
easy to observe appearance phenomena that are directly
related to the spatial surrounding of the stimulus. To ac-
count for these effects many color appearance models re-
quireaviewing field specification. In thisspecification the
viewing field is divided into as many as four components
[Fairchild98]: stimulus, proximal field, background and
surround. The effects of stimuli in these various compo-
nentsof theviewing field areincorporated into thecompu-
tational model. However, all of these models assume ho-
mogeneous stimulus field in each of the components and
henceare inadequate for use in complex scenes.

Physiological and psychophysical evidences indicate
that the photoreceptor response image is filtered by visual
mechanismssensitiveto patternsof different scale, and the
responsecharacteristicsof thesemechanismsarebandpass
in the spatial frequency domain [Wilson91]. Most of the
appearance phenomena discussed in the preceding para-
graph can be explained as consequencesof this multiscale
processing in the visual system. As in the adaptive gain
control mechanism, nonlinearities in the responses of the
bandpass mechanisms result in nonlinear variations in the
appearance of a stimulus as a function of the surrounding
stimuli.

In the vision community, many researchers [Daly93,
Lubin95] have proposed and successfully applied multi-
scale visual models for predicting visibility, masking and
other related phenomena. However, most of these mod-
els assume achromatic stimuli within a limited luminance
range and hence make very littl e prediction of color ap-
pearance. In this paper we introduce a new multiscale vi-
sual model that not only accounts for the effects of adap-
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igure 1. Flow chart of the computational model of Color Appearance.
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tation and spatial vision, but also correctly predicts color
appearanceattributesunder awidevariety of conditionsin
complex scenes. In the following sections we present this
model.

2. The Computational Model

Figure 1 provides a flow chart of each major step in the
computational model. The model processes an input im-
agetoencodetheperceivedcontrastsfor thechromaticand
achromatic channels in their band-passmechanisms. Cor-
relates of brightness, lightness, colorfulness, chroma, hue
and saturation are derived from the encoded visual repre-
sentation.

2.1. Input ImagePreprocessing

First, theimageisspatially sampledsuch that thebandpass
signalsrepresent appropriatespatial frequencies. Thencom-
pensationsareintroducedfor optical point-spreadandscat-
tering in the eye. The image is then spectrally sampled
to represent the visual system’s initial photoreceptor re-
sponses.

2.2. Spatial Decomposition

The four images representing the photoreceptor responses
are then subjected to spatial decomposition. We chose to
usetheLaplacian pyramid approach proposed by Burt and
Adelson [Burt83]. We first calculated a seven level Gaus-
sian pyramidusing afivetap filter. Each level of thisGaus-
sian pyramidrepresentsalow-passimagelimited to spatial
frequencieshalf of thoseof thenext higher level.

TheGaussian pyramid is then upsampledsuch that im-
age in each level in the upsampled pyramid is a low-pass
version of the corresponding image in the original pyra-
mid. The upsampled pyramid has six levels. Difference-
of-Gaussian pyramid is then calculated by subtracting the
upsampled pyramid from the original pyramid. This re-
sults in 6 levelsof band-pass imageswith peak spatial fre-
quenciesat 16, 8, 4, 2, 1, and0.5 cpd. Theseimagescanbe
thought of asrepresentationsof thesignalsinsix band-pass
mechanismsin thehuman visual system. The lowest-level
(7th) low passimageof theoriginal pyramid is retained for
separateprocessing.

2.3. Gain Control

The difference-of-Gaussian pyramid is then converted to
adapted contrast signals using a luminance gain control.
The gains are set using TVI-li ke functions shown in Fig-
ure 2. The functions shown have sub-Weber’s law behav-
ior [Chen87] which allows perceived contrast to increase
with luminance level. Each pixel in a given difference-of-
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Figure 2. Gain functions for cones and rods.

Gaussian image is multiplied by the gain derived from the
corresponding pixel in theupsampled pyramid.

Theresultingadaptedcontrast pyramid imagesareanal-
ogousto thecontrast images that Peli [Peli90], Lubin [Lu-
bin95] and Bril l [Brill97] obtained. However, in our model
the magnitude of these images is a function of the lumi-
nance level specified by thegain control functions. This is
necessary to allow prediction of luminance-dependent ap-
pearance effects. These luminance gain controls are ap-
plied in the same manner to the difference-of-Gaussia
pyramid for each of the photoreceptors. This allows pre-
diction of chromatic adaptation effects.

2.4. Opponent Color Processing

In the next stage of the model the adapted contrast sig-
nals for the cones are transformed into opponent signals.
This transformation is necessary to model differences in
thespatial processing of achromatic and chromatic signals
[Poirson93]. At thisstage, therod imagesareretained sep-
arately sincetheir spatial processingattributesaredifferent
from thecones.

2.5. Orientation Filtering , Contrast Transducers and
Thresholding

The adapted contrast signals are then processed by ori-
ented band pass filters to simulate the orientation tuning
of thevisual system. Thesefiltered signalsare then passed
throughcontrast transducer functions. Different transducer
functionsareapplied to each spatial frequency mechanism
in order to model the human spatial contrast sensitivity
functions. The transducers are also different for the chro-
matic channels to represent their lower sensitivities and
low-pass, rather than band-pass nature. Finally, the rod
system is processed through a distinct set of transducers
to represent its uniquespatial characteristics. At high con-
trast levels (> 5%) the transducer functions converge to a
The Sixth Color Imaging Conference: Colo
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Figure3. Contrast transducer functions. (a) for Cone achromatic mech-

anisms, (b) for Cone chromatic mechanisms; and (c) for Rod achromatic

mechanisms.

common square-root form to properly represent perceived
contrast constancy [Brady95] and introduceacompressive
nonlinearity typically found in masking experiments and
color appearancemodels. Thecontrast transducersused in
our model are illustrated in Figure 3. The contrast trans-
ducer functions are also designed such that contrasts that
are below threshold have an output level less than 1.0. In
the output of the transducer functions all values less than
1.0 are set to 0.0.

2.6. Combination of Rod and ConeSignals

After the contrast transducers, the rod and cone signals
are combined (weighted combination). We assume that
the rods contribute only to the luminance signal and thus
combinetheachromatic signal from theconeswith therod
signal.

At this stage in the model we have three channels rep-
resenting achromatic, red-green, and yellow-blueapparent
contrast for the oriented band-pass mechanisms. These
signals model threshold behavior, in that any contrast sig-
nals that could not be perceived have been eliminated by
the contrast transducer functions. They also model supra-
threshold appearance since the contrast signals grow with
luminance and the signals from chromatic channels be-
comezero at luminancelevels below thecone threshold.

2.7. Treatment of the Low Pass Image

The lowest level low-pass image from the original Gaus-
sianpyramid isalsoprocessedthroughagaincontrol mech-
anism similar to the gain control of the band-pass images
and alow-passspecific non-linear transducer.

2.8. Computation of Correlates of Color Appearance
Attri butes

The output of the model consists of appearance signals in
an achromatic and two chromatic channels and six spa-
r Science, Systems, and Applications       4
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Figure 4. Prediction of induction effect.

tial band-pass mechanisms plus a low-pass image. Im-
agesarereconstructed from thesesignals to create acolor-
appearance map that encodes the apparent color of each
pixel in the image for its particular viewing conditions.
The correlates of the appearance attributes are computed
from this color appearance map. Difference metrics in
these appearance dimensions can be used to derive image
quality metrics.

3. Predictions of the Model

3.1. Induction, Crispening, Spreading and Stevens
Effect

Figure 4 predicts the induction effect. The top images
show a gray patch on white, gray and dark background.
Thebottom imagesshow thebrightnessmapsof those im-
ages obtained from our model. The maps indicate that the
model correctly predicts the change in brightness of the
gray patch as a function of background luminance.

Figure 5 predicts the crispening effect. Crispening is
the apparent increase in the magnitudeof color difference
when background on which two stimuli are compared are
similar to the stimuli themselves. [Fairchild98] The top
imagescorrespondto apair of gray patcheson threediffer-
ent background. The bottom images illustrate the bright-
ness map. The images correctly predict larger brightness
differences (crispening) for the gray patches on the gray
surround as compared to the gray patches on white and
dark surrounds.

The images in Figure 6 predict contrast changes at a
wide rangeof luminance levelsspanning 9 ordersof mag-
nitudefrom0.001to100,000cd/m2. Theimagesarebright-
The Sixth Color Imaging Conference: Colo
Figure 5. Prediction of crispening effect.

ness maps of a simple scene containing 4 patches of vary-
ing reflectances (10%, 30%, 70% and 90%) on a back-
groundof uniformreflectance(50%). Ascanbeseen from
the Figure 6, contrast increases with the increase in lumi-
nance.

Figure7 predictsthespreading effect. Spreading is the
apparent mixtureof acolor stimuluswith itssurround. The
imageon theleft showsthestimuli input to themodel. The
spread of color is well captured in the hue map shown on
the right.

3.2. Chromatic Adaptation

Figure8 showstheeffect of chromatic adaptation. Thetop
row of imagesshowsasceneilluminatedby anearly-white
incandescent light source, a very reddish light source, and
avery bluelight sourceasthey wouldberenderedby asys-
tem incapable of chromatic adaptation. The shift in color
balanceof the reproduced prints is objectionablesince the
humanvisual systemlargely compensatesfor thesechanges
in illumination color through its mechanismsof chromatic
adaptation. The middle row shows the rendering from a
tone mapping system [Pattanaik98] based on the visual
processing carried out in our model. As our model treats
gain control in each of the classes of cone photoreceptors
independently, it is capableof predicting changes in chro-
matic adaptation similar to those that would be predicted
r Science, Systems, and Applications       5
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Figure 6. Prediction of Stevens effect.

Figure 7. Prediction of spreading effect.

by a von Kries model. However, due to the nature of the
gain control functions used to obtain increases in contrast
and colorfulness with luminance, the degree of chromatic
adaptation predicted by the model is less than 100% com-
plete. The last row of images illustrate the surround ef-
fect on the output of the model. The chromatic adapta-
tion ismuch less in thiscasebecauseof thegray surround.
Theseimagessimulatetheyellowishappearanceof an illu-
minated window at dusk or abluish CRT display viewed at
a distance. These reproductions match our perceptions of
changes in illumination color and replicate the incomplete
natureof chromaticadaptation that iswidely recognized in
thecolor science literature. [Fairchild98]

Inarecent experiment [Fairchild-Johnson98] correspond-
ing colors data were collected using complex images and
comparisonsbetween printsunder an illuminant D50 sim-
ulator andCRT displayswithboth illuminant D50andD65
white points. The results were used to compare the per-
formance of various chromatic adaptation transforms and
color appearancemodels. Themultiscaleadaptationmodel
described in this paper performed as well as thebest mod-
els (including CIELAB, von Kries and modified forms of
RLAB, ZLAB, and CIECAM97s) and significantly better
than other models.
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Figure 8. Illustration of chromatic adaptation.

3.3. High Dynamic Range ImageReproduction

Figure 9 illustrates application of the model to the tone
mapping of high-dynamic range images. The image on
the top of Figure 9 is linear mapping of the original high-
dynamic range image into the limited dynamic range of
the output device. The original image had a luminance
level of approximately 10,000 cd/m2 in the outside areas
and 10 cd/m2 in the indoor areas. The image on the bot-
tom represents the mapping obtained by inverting the vi-
sual representation of the image derived by our model for
the viewing conditions of the output display. In Figure 9
it is clear that far more detail can be observed both inside
and outside the parking garagewhen the image is mapped
using thevisual model.

4. Future Work

We have calibrated our model to correctly predict psy-
chophysical measurement data available in the literature.
We plan to further validate the predictions of the model
against perceptual experimentsinvolvingcolor images. Our
ultimate aim is to use the predictions of this model to de-
velopan imagequalitymetric toverify thefidelity incross-
media color reproduction and the perceived quality of im-
ages.
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