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Abstract
The CIE has compiled color matching functions

(CMFs) at one nm sampling to be used for computa-
tional color. Since most instruments produce sampled
data at resolutions considerably coarser than one nm,
the recorded data must be interpolated to finer resolu-
tion before the multiply and sum required to compute
the tristimulus values. This paper points out that the
interpolation which should be used depends on the
characteristics of the CIE interpolations which pro-
duced the CMFs, the characteristics of the reflectance
signals and the noise associated with the recording in-
strument.

1 Introduction
The reason for computational color is to facilitate

the communication of color description. If people in
different places can describe color numerically in a
consistent manner, then there is a basis for defining
and satisfying color specifications. The CIE has made
recommendations on how to numerically compute tris-
timulus values, [1]. Consistent results are obtained
when these recommendations are followed. There is a
question of accuracy. Does the value computed agree
with some physical or psychophysical characteristic of
an object under investigation?

To illustrate the difference between consistency and
accuracy, consider the following examples. A printer
must reproduce a standard digital image within a
given tolerance specified in terms of CIE Delta-Eab.
The manufacturer prints the target before shipment,
measures it, computes the CIELAB values and finds
the target within tolerance. The user tests the printer
after receiving it using the same instruments and pro-
cedure. If the result is in tolerance the device is ac-
cepted and the invoice is paid. If the result is out
of tolerance, the user must convince the manufacturer
that his results are correct. If the user has duplicated
the instruments and procedure of the manufacturer,
there is no question. Of course, the assumption is
that everything is in calibration.
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Suppose a researcher attempts to determine the tol-
erance of a viewer to slight color differences. Inciden-
tally, this example could substitute a scanner for a
viewer. The viewer’s CMFs are measured at some
sampling interval. The reflectances of samples are
measured at some, possibly different sampling inter-
val. The sampled data is interpolated to a common,
finer sampling interval, multipled and summed to es-
timate the tristimulus values. The question here is
accuracy. Does the computed result represent the pro-
cess of the viewer? Note that the answer cannot be
answered with certainty since it is impossible to know
how well the interpolations actually represent the con-
tinuous signals. It is possible to optimize the sampling
and interpolation process given assumptions about the
signals. The guidelines for this optimization are given
in this paper.

As a practical matter, the results presented here
show the limitations for accuracy of the tabulated CIE
color matching functions, which are the foundation
of computational color. The results also show that
following the exact CIE recommendations is the best
way to assure consistent if not accurate results.

2 Ideal Sampling and Interpolation
To design or test color devices computer simula-

tions are performed. Usually the simulation includes
computation of CIE tristimulus values. In any case,
the accuracy of the simulations in modeling analog de-
vices depends upon correct sampling and processing of
the sampled data. The data for the simulations usu-
ally comes from instruments which measure the spec-
tral reflectance or radiance of a colored object. This
sampled signal is then used to obtain the ideal color
values by digital computation.

Unfortunately, color signals are not perfectly ban-
dlimited. This means that any sampling will result
in some error. The statistics of the error will depend
upon the relationship between the sampling and re-
construction (interpolation) methods and the statisti-
cal characterization of the color signals.
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The exact method used to construct the CIE color
matching functions is not published. However, it is
sufficient to demonstrate the effect of sampling and
interpolation for a general case. In the next section,
examples of real signals will be used to indicate prac-
tical uses. The general sampling operation can be de-
scribed by

rs(n) =
∫ ∞
−∞

ra(t)sn(t)dt (1)

where ra(t) represents the analog signal in the contin-
uous domain (reflectance or radiance) and sn(t) rep-
resents an arbitrary sampling function or aperture.
Classical sampling is described by sn(x) = δ(x− n).

Let r be a signal defined in an N-dimensional space,
ΩN , where vectors are defined as column vectors. The
above sampling can be considered a subsampling of
the space. The integral in the continuous case can
be considered an inner product operator. The general
sampling can be represented by

rs(n) = rT sn =< r, sn > (2)

where sn is the nth sampling vector. The resulting
samples are combined into a vector which corresponds
to a sampled signal

rs = [rs(1), rs(2), · · · , rs(M)]T (3)

The sampling reduces the dimensionality of the space
from N to M. The sampled signal can be represented
by a linear operation

rs = ST r (4)

where S is an N ×M matrix and rs is a M × 1 vec-
tor. The vector rs which contains the sample values
represents a vector in the M dimensional subspace of
ΩN spanned by the columns of S. A reconstruction
(interpolation) method is a mapping from a lower di-
mensional space defined by samples to a higher dimen-
sional space. For example, using eq.(4)

ri = HMrs = HMST r (5)

the interpolation matrix, HM is N ×M . The interpo-
lation lies in a subspace defined by the columns of HM ,
ri ∈ ΩH . From this, it is easy to see that the interpo-
lation matrix (method) should be chosen to best rep-
resent the signal r. In other words, the signal should
have most of its power in ΩH . Problems can arise
when different interpolation methods are used in the
computation process. The use of different methods is
subtle in cases of tabulated values such as those given
3

by the CIE. It is unclear what interpolation method
was used to generate the tables. It can be shown that
optimum interpolation requires matching the charac-
terisitics of the signal and interpolation [3].

It is common to choose interpolation operators
which can exactly interpolate themselves, which
means that HSH = HT . This, in turn, implies that
H is a projection operator. However, the projection
need not be orthogonal. The reconstruction is exact
if r ∈ ΩH = ΩS . In this case, P = HS(STS)−1ST is
the identity operator on ΩH .

Errors can arise is several ways. One is that
the sampling and interpolation are not matched, i.e.
ΩH 6= ΩS . A second is that r is not completely con-
tained within ΩH . A combination of the two is the
most likely case. The fraction of the signal power of r
in ΩcH is a measure of the error where ΩN = ΩcH×ΩH .

The results of using several interpolation methods
is presented in Table 1. For this experiment, sim-
ulated color matching functions and radiant spectra
were generated by controlling the amount of power
in and out of the spaces defined by the interpolation
methods. The model for the reflectance spectra is
given by

r = PHf + σPc
Hf (6)

where f is a random vector, PH is the projection onto
the subspace defined by the interpolation matrix, Pc

H

is the projection onto the complement of ΩH , and σ is
a weighting factor determining the relative amount of
power outside the subspace. The parameter σ deter-
mines how well the signal characteristics are matched
to the interpolation. The simulated CMFs were gen-
erated using a similar model.

For the experiment, three common interpolations
were used: the bandlimited interpolation given by a
windowed sinc function, the Laplacian interpolation
recommended by the CIE and the linear interpola-
tion. The sampling and interpolation was done at a
4:1 ratio of the original full resolution signal. For the
table presented here, the CMFs were generated using
the H defined by the bandlimited space. Simulated
tabulated CMF vectors were generated by sampling
the simulated CMF and interpolating them using the
Laplacian method. The radiant spectra were sampled
and reconstructed using all three interpolation meth-
ods.

For the evaluation, the following values were com-
puted. The actual tristimulus value was computed;
call this t = aT r. Note for this example, it might be
referred to as a monostimulus value. The tristimulus
value obtained using the full resolution radiant spectra
and the tabulated (Laplace interpolated) CMF. This
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value attempts to simulate what can be done by re-
searchers using high resolution spectraradiometers to
obtain data. The researcher is limited by the CIE tab-
ulated values for the CMFs but can generate original
full resolution radiant spectra. This would be used to
establish the estimated actual value; call this ts = aTl r.
The tristimulus values estimated by the various inter-
polations are given by tb = aTl rb, tl = aTl rl, tc = aTl rc
for the bandlimited, Laplacian and linear interpola-
tions respectively. In addition, the tristimulus values
obtained by using the actual CMF and the various in-
terpolations were computed, tab = aT rb, tal = aT rl,
tac = aT rc.

Table 1 shows the following comparisons under var-
ious amounts of out-of-band power for both the CMFs
and radiant spectra. The mean square error (MSE) of
the interpolation of the radiant spectra was computed
to show how well the interpolation works. The MSE
of the tristimulus estimates and ts indicates the error
obtained in simulating a system using the tabulated
values. Finally, the MSE of the tristimulus estimates
using the actual CMF and t indicates the actual error.

From the table, it is seen that it is possible to have
more accurate estimates of the radiant spectra but
worse estimates of the simulated tristimulus values,
e.g. the case of σcmf = 0.05 and σr = 0.02. In gen-
eral, for cases where there is little out-of-band power,
the bandlimited interpolation is optimal. Where the
out-of-band power is higher, the optimal interpolation
is the same as that used to obtain the tabulated CMF.
This was tested by varying the interpolation method
for the CMF and rerunning the experiment. This ef-
fect explains the results of the simulation comparison
of bandlimited and Laplacian interpolators presented
in [2].

3 Results on Radiant Spectra
There is a question of which out-of-band power case

best represents that encountered by workers in the
field. While there is no definitive answer, an exper-
iment was done to indicate the possibilities. It is im-
possible to determine the actual CMFs which would
be required to test how much power is out-of-band.
It is possible to collect high resolution radiant spectra
which can be assumed to be full resolution. This data
can be subsampled and then interpolated to test which
method works the best. Spectral data was used from a
well known database. This data was sampled at 2 nm.
Only three data sets were available. In order to obtain
results for a wider variety of data, additional data sets
were generated by subsampling the three original sets.
Subsampling the original spectral data at 4:1 results
in a simulated sampling of 8 nm resolution. This was
30
included to demonstrate that optimal interpolations
depend on the character of the data. The results of
interpolating various subsampled spectra at 4:1 from
various ensembles is presented in Table 2. The first
column of the table shows the simulated resolution
before and after interpolation. The mean square error
was taken over the midrange of the signals to avoid
end effects.

The results show that no one interpolation method
works best in all cases. The linear interpolation does
surprisingly well. The bandlimited interpolation is
never the best of the three tested and never outper-
forms the linear interpolation. The Laplacian outper-
forms the linear in two cases and then only by a slight
amount. Comparing this to previous work, it should
be noted that the results of the comparison of inte-
gration methods used to compute tristimulus values,
presented in [4], may be biased by the use of the tab-
ulated (interpolated) CIE CMF values.

4 Summary
It has been shown that the characteristics of the sig-

nals determine the optimal interpolation method for
color computations from sampled data. The exper-
iments with actual radiant spectra indicate that for
high resolution data, linear interpolation is often the
preferred method. This should be taken into account
during the next revision of the CIE recommentations
and tabulation of color matching functions. It has also
been shown that for many realistic representations of
signals, the recommended Laplace interpolation is op-
timal if it is assumed that the tabulated CMFs were
obtained using that method or one very similar.
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Table 1: Mean Square Errors in Spectra and Tristim-
ulus Values for Interpolators
σcmf σr r − rd r − rl r − rc t− td t− tl t− tc ts − td ts − tl ts − tc
0.02 0.02 0.570 0.744 1.170 1.087 2.660 3.365 1.178 1.241 1.941
0.05 0.02 0.571 0.732 1.152 1.282 2.927 3.686 1.333 1.273 2.035
0.20 0.02 0.576 0.742 1.162 1.950 2.447 2.801 0.943 0.839 1.322
0.02 0.05 0.706 0.698 1.107 1.214 2.397 2.999 1.265 1.029 1.616
0.05 0.05 0.702 0.701 1.111 1.203 2.142 2.697 1.293 0.970 1.505
0.20 0.05 0.719 0.731 1.154 1.980 2.575 3.051 1.249 0.939 1.544
0.02 0.20 1.496 0.987 1.172 1.730 1.931 2.399 2.169 1.053 1.276
0.05 0.20 1.480 0.985 1.175 2.235 2.423 2.924 2.662 1.494 1.700
0.20 0.20 1.479 1.003 1.204 2.778 2.791 3.232 2.509 1.171 1.524

Table 2: Mean Square Errors in Actual Sampled Spec-
tra for 4:1 Interpolation

resolution data set r − rd r − rl r − rc
before:after

(nm)
8:2 objects 0.026 0.012 0.007
8:2 paint 0.035 0.012 0.007
8:2 munsell 0.035 0.015 0.016

16:4 objects 0.022 0.024 0.015
16:4 paint 0.026 0.024 0.013
16:4 munsell 0.028 0.028 0.019
32:8 objects 0.031 0.037 0.029
32:8 paint 0.056 0.062 0.053
32:8 munsell 0.051 0.047 0.049
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