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Abstract
To characterize color values measured by color devic
(e.g. scanners, color copiers and color cameras) in a dev
independent fashion these values must be transformed
colorimetric tristimulus values. Often it is assumed th
RGBs are approximately linearly related to XYZs and s
this transformation is determined by least–squares (L
linear regression. While the LS method is guaranteed
minimize the residual squared error it makes noa priori
statement about which colors will be mapped well an
which will be mapped poorly. However, we argue tha
such a statement must be made. In particular becaus
is important to preserve the white and the gray-scale
color reproduction, we argue that achromatic colors shou
be preserved in color correction. This argument led us
develop a new regression procedure: thewhite-point pre-
serving least-squares fit(WPPLS). As the name might sug-
gest, this method finds the linear transform which ma
RGBs to XYZs such that the residual squared error is mi
imized subject to the constraint that white and grays ar
preserved. Of course, by definition, the WPPLS regres
sion must, in terms of squared error, deliver poorer col
correction compared with the LS procedure; but, squar
error need not necessarily correlate with perceived visu
error. Indeed, we present a number of simulation expe
ments which show that the WPPLS procedure performs
well or better than the LS regression. These results prov
experimental confirmation of the privileged status of whit
in visual perception and color reproduction.

1. Introduction

Color sensors in scanners, color copiers and color came
are not colorimetric, in the sense that device RGB valu
are not a linear transformation away from the X,Y,Z tris
timulus values [1]. The transformation from RGB to XYZ
forms the first step in developing a device–independent d
scription of color for these devices [2]. Given a particula
set of targets or dyes one can map from RGB to XYZ u
ing interpolation and look-up-tables[3, 4, 5]. More ele
gantly, the device coordinates can be transformed to vis
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tristimuli using a single linear transform (a3 � 3 matrix).
This transform is often defined to be the best linear least–
squares mapping for a particular calibration set of surface
reflectances.

The least-squares regression optimally maps RGBs to
XYZs so that the residual squared error for a calibration
data set is minimized. However, there is no mechanism
for choosing the surfaces which will be mapped well and
those which will be mapped poorly. For example, it is pos-
sible that for one calibration set a white reflectance may
be mapped exactly and for another it may be mapped with
a high colorimetric error. Given the importance of white
(and the gray-scale) in color reproduction[6], we would
rather not have this variable performance. Thus, in this pa-
per we report on the white-point preserving least-squares
fit (WPPLS) procedure that we have developed. As the
name suggests, WPPLS is a method for determining the
best least-squares transform that takes RGBs to XYZs sub-
ject to the constraint that the RGB response induced by
a white reflectance is mapped without error. Importantly,
when white is mapped correctly then this implies that the
gray-scale is also preserved.

Of course, in terms of squared residual error, the WP-
PLS regression must perform less well than a least–square
regression for any particular set of calibration reflectances
that are used. However, residual squared error is a purely
numerical notion and does not exactly agree with perceived
visual error (e.g. in terms of CIELAB[1] or CMC[7] de-
fined color differences). To test the colorimetric perfor-
mance of the LS and WPPLS correction methods we car-
ried out a variety of simulation experiments. RGBs were
generated for a Sharp JX450 color scanner along with the
corresponding XYZs. The LS and WPPLS transforms were
calculated under two different statistical assumptions. First,
correction transforms were derived using a real set of re-
flectances (e.g. the Munsells) and second, with respect a
hypothetical set that contains all surface reflectances (the
so-called maximum ignorance case). When a real calibra-
tion set is used both the LS and WPPLS regressions de-
liver comparable performance; though of course WPPLS
maps achromatic colors with much smaller error. Under
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the maximum ignorance assumption the WPPLS regr
sion performs much better than the LS procedure.

2. Linear Color Correction

Suppose that we measure the XYZ tristimuli values for
set ofn surfaces and place them in the rows of ann � 3
matrixM. We measure the RGB response for the sa
surfaces using a scanner (or color camera) and place
n rgb response triplets in ann � 3 matrixN . The aim of
linear color correction is to find a3�3 matrixT such that:

M � NT (Linear color correction)

In order to solve forT we must define what we mean b
� (the symbol for approximation). In the method of leas
squares (LS) we wish to find the transformT which mini-
mizes the residual squared error. Such a transform is e
ily found[8] (details are given in the Appendix). Unfor
tunately in the method of least-squares we do not a p
ori know which rows ofN will be mapped with small
error and which will be mapped with large error and w
would like to know this. In particular, should the LS pro
cedure map white (and the gray-scale) with a large er
then this will lead to unacceptable color reproduction. The
white-point preserving least-squares (WPPLS) proced
is a correction method which is specifically designed
circumvent this problem.

To see how the WPPLS procedure works it is useful
normalize the matricesM andN with respect to white.
Specifically, let us suppose that the XYZ response to
white reflectance is(xw; yw; zw) and the device RGB re-
sponse to white(rw; gw; bw). If (xi; yi; zi) is theith row
vector ofM then this tristimulus normalized to white is
defined to be equal to(xi=xw; yi=yw; zi=zw). Similarly,
the ith row of the device response matrixN normalized
to white is equal tori=rw; gi=gw; bi=bw. Normalizing to
white has the advantage that the XYZ tristimulus and RG
response for a perfect white diffuser are both be equa
(1,1,1).

The white-point preserving color correction problem
now easily stated:

M
0

� N
0

T AND utT = ut

(White-point preserving color correction)
Here0 represents normalizing to white andut is a row vec-
tor, equal to (1,1,1), representing white (note the und
score notation is used to denotes a vector andt denotes
the transpose operation). The white-point preserving lea
squares procedures finds the transformT that minimizes
the overall residual squared error and at the same time
serves white. We show in the appendix that the transfo
T is straightforward to find; that is, there is a simple clos
form solution (see Appendix for details). The basic insig
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that is exploited is that ifutT = ut then the sum of the
components ineach column ofT must equal 1 and this
constraint is easily enforced using the method of Lagrang
multipliers.

Figure 1 illustrates the LS and WPPLS procedures
action. At the top of the figure we have tabulated th
RGB response of a Sharp JX450 to the 6 Macbeth check
patches (those with color names red, purple, blue, gre
red and yellow) and to a perfect diffusing white. All re-
sponses have been normalized to white. At the bottom
the Figure the corresponding white-normalized XYZ re
sponses (viewing illuminant D65) are shown. In the con
text of this example, the goal of linear color correction is t
map the7�3 RGB matrix of responses as close as possib
to the7� 3 matrix of XYZ tristimuli.

Performing a least-squares regression of the RGB da
onto the XYZ tristimuli results in the table of numbers in
the middle left. Notice that reasonable color correction ha
been achieved: the numbers in the transformed table a
quite close to the desired XYZs. Importantly, the�E er-
rors are reasonably small, ranging from 1.7 to 6.9 CMC[7
units1. Notice, however, that despite the fact that the RG
and XYZ response to white are both (100,100,100) that th
LS corrected RGB response is equal to (99.8,100.0,104.
a CMC error of 1.9 has been incurred. Perhaps a mo
serious problem is the fact that the LS corrected B(lue) r
sponse is equal to 104.1 is bigger than 100 and this is phy
ically impossible since white is the most reflective surfac
reflectance.

The white-point preserving correction attains broadl
similar performance (see table in the middle right of th
Figure) for the 6 Macbeth checker patches. Notice, how
ever, that white has been perfectly corrected and as su
has 0 CMC error. The importance of this fact is borne ou
in more comprehensive simulation experiments reported
the next section.

3. Simulation Experiments

We generated XYZ tristimuli, for viewing illuminant D65,
for 3 spectral reflectance data sets: the 462 Munsells me
sured by Nickerson[9], the 24 Macbeth Color checker[10
patches and the 170 real object reflectances measured
Vrhel et al[11]. Corresponding RGB responses were ge
erated for a Sharp JX450 color scanner. We calculated t
LS and WPPLS correction transforms for each of the da
sets. After applying these transforms to the RGB data, w
calculated the residual error using the CMC[7] color differ
ence formulae. The results of these simulation experimen
are summarized in Table 1.

1Broadly speaking CMC units correlate with CIELAB units. How-
ever, the CMC formula more accurately explains experimental colo
difference data.
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Figure 1: A comparison of LS and WPPLS linear color correc
tion

LS WPPLS
Data Set � sd white � sd white
Munsell 1.54 1.45 1.71 1.75 1.57 0.41
Macbeth 2.01 1.29 1.55 1.86 1.51 0.40
Object 1.53 1.63 1.51 1.60 1.72 0.40

Table 1: Colorimetric (CMC) error in mapping scanner RGBs to
XYZs using the LS and WPPLS regressions

For the Munsell and Object reflectance data sets, t
LS regression delivers slightly better performance than t
new WPPLS procedure. However, the WPPLS, provid
better performance for the Macbeth checker and this
probably due to the high number (25%) of achromatic co
ors on the chart. In the columns headed ‘white’ we ha
tabulated the colorimetric error incurred in mapping th
whitest Munsell reflectance (the reflectance that is clos
to the perfect white diffuser). As we would expect the WP
PLS transform maps this reflectance with lower colorime
ric error compared with the LS procedure. In summary, th
message that Table 1 conveys is that a correction transfo
which preserves white (and correction transforms shou
preserve white) does not incur a significant colorimetr
overhead compared with the unconstrained LS regressi

The data presented in Table 1 reflects very much t
best case scenario for color correction. That is, we ca
brate our color device for a given data set and then we t
our calibration using the same data. Of course, this sc
nario will not often apply to the real world since it is un
likely that we shall only scan (or take pictures of) the sam
reflectances that we use for calibration. Indeed, it can
-
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LS WPPLS
Data Set � sd white � sd white
MUN 6.31 2.25 12.70 3.44 2.15 0.70
MAC 6.49 2.87 12.70 4.03 3.12 0.70
OBJ 6.20 2.72 12.70 4.14 2.51 0.70

Table 2: Colorimetric (CMC) error in mapping scanner RGBs to
XYZs using the LS and WPPLS regressions

argued that we do not want to calibrate our color device for
any particular reflectance set since this might lead to poor
colorimetric performance for any reflectances outside this
set. To address this problem, many authors make the as-
sumption that all reflectances occur with equal likelihood;
simply put, any reflectance function that you can draw on
a graph is assumed as likely as any other. Under the max-
imum ignorance assumption the correction transform can
be derived via a numerical procedure involving the spectral
sensitivity functions of the color device and the XYZ color
matching curves[12]. That this is so is very useful since we
side-step the whole calibration procedure (and calibration
is time consuming).

In Table 2 we compare the colorimetric performance
delivered by the LS and WPPLS transforms, derived un-
der the maximum ignorance assumption, operating on the
Munsell, Macbeth and Object spectral reflectance data sets
It is apparent that, in all cases, the WPPLS regression de-
livers substantially better performance. Indeed, it is rea-
sonable to conclude that maximum ignorance color correc-
tion is acceptable if and only if the white-point preserving
regression is used.

4. Conclusions

The popular least-squares method for color correction finds
the linear transform that maps device RGBs to XYZs with
minimum error. Unfortunately, this method makes no state-
ment about which colors will be mapped with low error
and we would like to make such a statement. In particular,
because maintaining white, and the gray-scale, is so fun-
damental to color reproduction we would like to develop a
correction transform that, while optimizing a global error
criterion also preserves white. Such a method was reported
in this paper. Thewhite point preserving least-squares
procedure (WPPLS) finds the linear transform that maps
RGBs to XYZ tristimuli such that the residual error is min-
imized subject to the constraint that whites, and the gray-
scale, are corrected without error. In terms of colorimet-
ric error, the WPPLS regression always performs at least
as well as unconstrained linear regression and sometimes
substantially better.
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Appendix

LetN , v andc be ann�3 data matrix, ann�1 data vector
and a3 � 1 coefficient vector (which is to be solved for)
respectively. Let

I = jN
0c � vj (1)

wherej:j is the L2 norm (i.e., vector length). It follows that
I2 can be written as:

J = I2 = ctN t

N c� 2ctN tv + vtv (2)

We can find thec which minimizes (2) by differentiatingJ
and equating to 0:

�J

�c
= 2N t

N c � 2N tv = 0 (3)

It follows that

c = [N t

N ]�1
N

tv (4)

Equation (4) is the solution to the least-squares (LS)
color correction problem. To find theith column vector of
the 3 � 3 LS transformT (discussed in the text) simply
substitute theith column ofM for v in (4).

Let us augment the minimization of (2) with a La-
grange multiplier term:

J = ctN t

N c � 2c2N tv + vtv + �(ctu� 1) (5)

whereut = (1; 1; 1). Differentiating with respect to the
Lagrange multiplier� and equating to 0 we have:

@J

@�
= ctu� 1 = 0 ) ctu = 1 (6)

Relation (6) tells us that when we find the stationary point
of J we must havectu = 1. That is, the sum of the com-
ponents ofc equals 1. This is precisely the condition that
we need for the white-point preserving minimization.

Differentiating (5) with respect toc and equating to 0:

@J

@c
= 2N t

N c� 2N tv + �u = 0 (7)

Taking (6) and (7) together and applying some algebraic
manipulation it can be shown that:

c = [N t

N ]�1
N

tv +
(1� vtN [N tN ]�1u)

(ut[N tN ]�1u)
[N t

N ]�1u

(8)
Equation (8) provides a solution to the white-point pre-

serving least-squares color correction problem. To find the
ith column vector of the WPPLS transformT we substi-
tute theith column ofM for v in (8).
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