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Abstract tristimuli using a single linear transform gax 3 matrix).

To characterize color values measured by color devicedhis transform is often defined to be the best linear least—
(e.g. scanners, color copiers and color cameras) in a devicgduares mapping for a particular calibration set of surface
independent fashion these values must be transformed f§flectances.

colorimetric tristimulus values. Often it is assumed that  The least-squares regression optimally maps RGBs to
RGBs are approximately linearly related to XYZs and soXYZs so that the residual squared error for a calibration
this transformation is determined by least-squares (LSyata set is minimized. However, there is no mechanism
linear regression. While the LS method is guaranteed tdor choosing the sugices which will be mapped well and
minimize the residual squared error it makesanpriori  those which will be mapped poorly. For example, itis pos-
statement about which colors will be mapped well andsible that for one calibration set a white reflectance may
which will be mapped poorly. However, we argue thatbe mapped exactly and for another it may be mapped with
such a statement must be made. In particular because at high colorimetric error. Given the importance of white
is important to preserve the white and the gray-scale ifand the gray-scale) in color reproduction[6], we would
color reproduction, we argue that achromatic colors shouldather not have this variable performance. Thus, in this pa-
be preserved in color correction. This argument led us tger we report on the white-point preserving least-squares
develop a new regression procedure: whdte-point pre-  fit (WPPLS) procedure that we have developed. As the
serving least-squares {itVPPLS). As the name might sug- name suggests, WPPLS is a method for determining the
gest, this method finds the linear transform which mapdest least-squares transform that takes RGBs to XYZs sub-
RGBs to XYZs such that the residual squared error is minject to the constraint that the RGB response induced by
imized subject to the constraint that white and grays are a white reflectance is mapped without error. Importantly,
preserved Of course, by definition, the WPPLS regres- when white is mapped correctly then this implies that the
sion must, in terms of squared error, deliver poorer cologray-scale is also preserved.

correction compared with the LS procedure; but, squared  Of course, in terms of squared residual error, the WP-
error need not necessarily correlate with perceived visuab| S regression must perform less well than a least-squares
error. Indeed, we present a number of simulation experiregression for any particular set of calibration reflectances
ments which show that the WPPLS procedure performs agat are used. However, residual squared error is a purely
well or better than the LS regression. These results providaumerical notion and does not exactly agree with perceived
experimental confirmation of the privileged status of whiteyisual error (e.g. in terms of CIELAB[1] or CMC[7] de-

in visual perception and color reproduction. fined color differences). To test the colorimetric perfor-
mance of the LS and WPPLS correction methods we car-
1. Introduction ried out a variety of simulation experiments. RGBs were

generated for a Sharp JX450 color scanner along with the
Color sensors in scanners, color copiers and color cameramrresponding XYZs. The LS and WPPLS transforms were
are not colorimetric, in the sense that device RGB valuegalculated under two different statistical assumptions. First,
are not a linear transformation away from the X,Y,Z tris- correction transforms were derived using a real set of re-
timulus values [1]. The transformation from RGB to XYZ flectances (e.g. the Munsells) and second, with respect a
forms the first step in developing a device—independent dehypothetical set that contains all surface reflectances (the
scription of color for these devices [2]. Given a particularso-called maximum ignorance case). When a real calibra-
set of targets or dyes one can map from RGB to XYZ us+tion set is used both the LS and WPPLS regressions de-
ing interpolation and look-up-tables[3, 4, 5]. More ele- liver comparable performance; though of course WPPLS
gantly, the device coordinates can be transformed to visuahaps achromatic colors with much smaller error. Under
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the maximum ignorance assumption the WPPLS regreshat is exploited is that i’ 7 = u! then the sum of the

sion performs much better than the LS procedure. components ireach column of/ must equal 1 and this
constraint is easily enforced using the method of Lagrange
2. Linear Color Correction multipliers.

Figure 1 illustrates the LS and WPPLS procedures in
Suppose that we measure the XYZ tristimuli values for aaction. At the top of the figure we have tabulated the
set ofn surfaces and place them in the rows ofrax 3~ RGB response of a Sharp JX450 to the 6 Macbeth checker
matrix M. We measure the RGB response for the samépatches (those with color names red, purple, blue, green
surfaces using a scanner (or color camera) and place thied and yellow) and to a perfect diffusing white. All re-
n rgb response triplets in anx 3 matrix /. The aim of ~ Sponses have been normalized to white. At the bottom of
linear color correction is to find&x 3 matrix 7 such that: ~ the Figure the corresponding white-normalized XYZ re-
sponses (viewing illuminant D65) are shown. In the con-
M~ NT (Linear color correction ~ text of this example, the goal of linear color correction is to
i map ther x 3 RGB matrix of responses as close as possible
In order to solve for/” we must define what we mean by 4 the7 « 3 matrix of XYZ tristimuli.

~ (the symbol for e}pproxi.mation). In the method Of, Igast- Performing a least-squares regression of the RGB data
squares (LS) we wish to find the transfofmwhich MINI= 5nto the XYZ tristimuli results in the table of numbers in
MIzes the re5|dua}l squargd error. Such a trapsform IS ©3fe middle left. Notice that reasonable color correction has
lly found[8] (details are given in the Appendix). Unfor- _been achieved: the numbers in the transformed table are
tunately in the method of Iegst-squares we c!o hot a PMyuite close to the desired XYZs. Importantly, the? er-
oriknow WT:CT] royl\lls of V" will be .rr;alpped with small ¢ are reasonably small, ranging from 1.7 to 6.9 CMC[7]
erro: alnlfl w Ilf Wi ht,’e mappe.d Vlv't Ergei errrlor and WE unitst. Notice, however, that despite the fact that the RGB
would like to know this. In particular, should the LS pro- onq yy7 response to white are both (100,100,100) that the

cedure. map white (and the gray-scale) with a large ®ITO[ s corrected RGB response is equal to (99.8,100.0,104.1);
then this will lead to unacceptable color regduction. The a CMC error of 1.9 has been incurred. Perhaps a more

White-point preserving least-squares (WPPLS) procedurggiq ;g problem is the fact that the LS corrected B(lue) re-

is a correction method which is specifically designed tosponse is equal to 104.1 is bigger than 100 and this is phys-

circumvent this problem. . ically impossible since white is the most reflective surface
To see how the WPPLS procedure works it is useful tg

. . , 5 reflectance.
normalize the matriced4 and A" with respect to white.

o The white-point preserving correction attains broadly
Sp§C|f|caIIy, let us suppose that the XYZ response to Limilar performance (see table in the middle right of the
white reflectance i$z", y*, z*) and the device RGB re-

{0 Whitér® o 5. 1f (25 v 2 is theith Figure) for the 6 Macbeth checker patches. Notice, how-
sponse to whitgr g0 ) (i, i, ) Is theuth row: ever, that white has been perfectly corrected and as such
vector of M then this tristimulus normalized to white is has 0 CMC error. The importance of this fact is borne out
defined to be equal tor; /=", y; /y*, 2i/z"). Similarly, )

. : . in more comprehensive simulation experiments reported in
the ith row of the device response matrix normalized D P P

to white is equal to; /7%, g;/¢", b;/b¥. Normalizing to the next section.
white has the advantage that the XYZ tristimulusand RGB
response for a perfect white diffuser are both be equal to 3. Simulation Experiments
(1,1,1).
The white-point preserving color correction problem is We generated XYZ tristimuli, for viewing illuminant D65,
now easily stated: for 3 spectral reflectance data sets: the 462 Munsells mea-
sured by Nickerson[9], the 24 Macbeth Color checker[10]
M =~ N'T AND u'T =’ patches and the 170 real object reflectances measured by
(White-point preserving color correctipn  Vrhel et al[11]. Corresponding RGB responses were gen-
Here’ represents normalizing to white antlis arow vec-  erated for a Sharp JX450 color scanner. We calculated the
tor, equal to (1,1,1), representing white (note the undertS and WPPLS correction transforms for each of the data
score notation is used to denotes a vector adénotes  sets. After applying these transforms to the RGB data, we
the transpose operation). The white-point preserving leastalculated the residual error using the CMC[7] color differ-
squares procedures finds the transfofnthat minimizes  ence formulae. The results of these simulation experiments
the overall residual squared error and at the same time pre@re summarized in Table 1.
serves V\_/hite. We show in the appendix .that t'he transform !Broadly speaking CMC units correlate with CIELAB units. How-
Tis Stra'ghtforward tofind; thatis, there is aSImpIe CIOSedever, the CMC formula more accurately explains experimen.tal color-
form solution (see Appendix for details). The basic insightdifference data.
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R G B LS WPPLS
o 57.0 167 6.2 - -
p 132 84 156 Data Set| sd | white | pu sd | white
? i85 ‘68 6b MUN 6.31| 2.25| 12.70| 3.44| 2.15| 0.70
MAC 6.49 | 2.87 | 12.70| 4.03| 3.12| 0.70
LS WPPLS OBJ 6.20 | 2.72 | 12.70| 4.14 | 2.51| 0.70

Table 2 Colorimetric (CMC) error in mapping scanner RGBs to
XYZs using the LS and WPPLS regressions

0 33.8 256 86 0 342 255 6.5
b8l &7 a7 b 190 &8 208
? 35 124 63 ? 250 183 sa argued that we do not want to calibrate our color device for
any particular reflectance set since this might lead to poor
At A colorimetric performance for any reflectances outside this
\ﬂ 22 set. Tp address this problem, many a}uthors mgke.the as-
26 \ ?67 ;6 28_9 31 sgmptlon that all reflectances occur with equal likelihood;
gzg\ P96 69 ié:‘é/ 67 simply put, any reflectance function that you can draw on
9 126 238 125 a graph is assumed as likely as any other. Under the max-

21.7 12.
=336 =353 imum ignorance assumption the correction transform can

be derived via a numerical procedure involving the spectral
sensitivity functions of the color device and the XYZ color
matching curves[12]. That thisis so is very useful since we
side-step the whole calibration procedure (and calibration
is time consuming).

In Table 2 we compare the colorimetric performance
delivered by the LS and WPPLS transforms, derived un-
der the maximum ignorance assumption, operating on the
Munsell, Macbeth and Object spectral reflectance data sets.
It is apparent that, in all cases, the WPPLS regression de-
livers substantially better performance. Indeed, it is rea-
sonable to conclude that maximum ignorance color correc-
tion is acceptable if and only if the white-point preserving
regression is used.

For the Munsell and Object reflectance data sets, the
LS regression delivers slightly better performance than the 4. Conclusions
new WPPLS procedure. However, the WPPLS, provides
better performance for the Macbeth checker and this ighe popular least-squares method for color correction finds
probably due to the high number (25%) of achromatic col-the linear transform that maps device RGBs to XYZs with
ors on the chart. In the columns headed ‘white’ we haveminimum error. Unfortunately, this method makes no state-
tabulated the colorimetric error incurred in mapping thement about which colors will be mapped with low error
whitest Munsell reflectance (the reflectance that is closesind we would like to make such a statement. In particular,
to the perfect white diffuser). As we would expect the WP-because maintaining white, and the gray-scale, is so fun-
PLS transform maps this reflectance with lower colorimet-damental to color reproduction we would like to develop a
ric error compared with the LS procedure. In summary, thecorrection transform that, while optimizing a global error
message that Table 1 conveys is that a correction transforeriterion also preserves white. Such a method was reported
which preserves white (and correction transforms shouldn this paper. Thevhite point preserving least-squares
preserve white) does not incur a significant colorimetricprocedure (WPPLS) finds the linear transform that maps
overhead compared with the unconstrained LS regressiorRGBs to XYZ tristimuli such that the residual error is min-

The data presented in Table 1 reflects very much thémized subject to the constraint that whites, and the gray-
best case scenario for color correction. That is, we caliscale, are corrected without error. In terms of colorimet-
brate our color device for a given data set and then we tegic error, the WPPLS regression always performs at least
our calibration using the same data. Of course, this sceas Well as unconstrained linear regression and sometimes
nario will not often apply to the real world since it is un- substantially better.
likely that we shall only scan (or take pictures of) the same
reflectances that we use for calibration. Indeed, it can be

Figure I A comparison of LS and WPPLS linear color correc-
tion

LS WPPLS
Data Set| pu sd | white | sd | white
Munsell | 1.54| 1.45| 1.71 | 1.75| 1.57| 0.41
Macbeth| 2.01| 1.29| 155 | 1.86| 1.51| 0.40
Object 153 163| 151 | 160| 1.72| 0.40
Table I Colorimetric (CMC) error in mapping scanner RGBs to
XYZs using the LS and WPPLS regressions
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Acknowledgements Appendix

This work was carried out when Graham Finlayson was d-et.V, v andc be am x 3 data matrix, am x 1 data vector
faculty member in the Department of Computer Science aand a3 x 1 coefficient vector (which is to be solved for)
the University of York. respectively. Let

I = |N'c—v (1)
where|.| is the L2 norm (i.e., vector length). It follows that
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