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Abstract

A method is described for estimating the reflection
components of glossy objects when the color signal is a
mixture of body reflection, interface reflection, and
interreflections.   The objects are dielectric materials.  We
first model interreflection between two surfaces.  Next, an
algorithm is described for estimating the reflection
components  from a single color image.  This estimation is
performed in three steps of estimating illumination, object
colors, and body interreflection.  A chromaticity plane is
introduced for analyzing the interreflection effects.  We
propose an algorithm for separating the measured image into
the reflection components.  The feasibility of the method is
shown in experiments.

Introduction

The observed color vectors from an object surface of
inhomogeneous dielectric materials are expressed in a linear
combination of the body reflection and the interface

reflection1-3.    When multiple objects of these materials are
placed close,  we observe mirror-like interreflections on the
smooth surface from other nearby surfaces.  By
multiplication of dichromatic reflection, the interreflection
between two surfaces is described as a sum of four terms
including body-body reflection.   This body interreflection
was often neglected previously.  This component was
considered as being weak compared with the other
components because (a) the reflected light was diffused
widely and (b) the resulting reflectance was determined on
multiplication of the body-spectral reflectances of both

surfaces4.   However it should be noted that the body
interreflection is not decreased between similar object
colors.  This  effect cannot be neglected.

The previous works on the reflection analysis are as
follows:  Klinker et al. introduced a dichromatic reflection

model1.  Shafer et al. modeled reflection components under

interreflection4.  Funt et al. analyzed interreflection between

two matte surfaces5.  Bajcsy et al.  detected highlights and

interreflections by analyzing color histograms6.  Tominaga
described a method for estimating the surface-spectral

reflectances of glossy objects from the spectral data7, where
the body interreflection was not considered.   No algorithm,
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however, was given for estimating all color components of
the complicated interreflections.

The present paper describes a method for estimating the
four reflection components from a single color image of two
closely apposed object surfaces.   The objects are dielectric
materials, and a color CCD camera is used for imaging
under a single light source.   The reflection components
correspond to the illumination color, the two object colors,
and the body interreflection color between two surfaces.

We first model interreflection between two surfaces.
Next, an algorithm is described for estimating the reflection
components  from a single color image.  This estimation is
performed in three steps.   The illumination  is estimated
from highlight areas in an image.  We introduce a
chromaticity plane for analyzing the chromaticity
distribution of the image with interreflections. The object
colors and the body interreflection are then estimated on the
chromaticity distribution.   Moreover, an algorithm is
proposed for separating the measured image into the
reflection components.

Modeling Reflection and Interreflection

Figure 1 shows interreflection between two nearby surfaces
A and B.   First, consider light reflection from a surface, A,
by direct illumination from the single light source.  This
reflection consists of two terms of the body and interface
reflection components.  A nearby surface, B, provides a
second source of illumination onto the surface A.  Assume
that the interreflection is based on only one bounce between
two surfaces.  The color signal  from A is then described as
YA(x, λ)  = wb

A(x) SA(λ) E(λ) + wi
A(x) E(λ) + YAB(x, λ),

(1)
where SA(λ) is the body-spectral reflectance of A,  and
wb

A(x)  and wi
A(x) are the weighting coefficients at location x

on A.  The first two terms in the right-hand side represent
the dichromatic reflection by direct illumination.  The third
term YAB(x, λ)  represents the interreflection component by
light  reflected by the surface B.

This interreflection term is described as a sum of four
terms of body-interface, interface-body, interface-interface,
and body-body as shown in Figure 1.   The term body-body
represents the reflection process that body reflection occurs
on both surfaces A and B.   This interreflection is not
neglected in this study.    Grouping the reflection
components yields a color signal containing four terms,
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YA(x, λ)  = wb2
A (x) SA(λ) E(λ) + wib

AB(x) SB(λ) E(λ) 
                     + wi2

A(x) E(λ) + wbb
AB(x) SA(λ) SB(λ) E(λ)

,

(2)
The first term represents the object color of A.  The second
term is the object color of B by mirror-like reflection of A.
The third term is the illumination color, which is produced
by interface reflection of A and partly by interface-interface.
The fourth term corresponds to the color produced by the
body-body interreflection between A and B.

We can express the reflection model in terms of RGB
values of a camera output .  Define the four color vectors of
object colors of A and B, illumination, and body
interreflection as

ρA = 

ρR
A

ρG
A

ρB
A

,   ρB = 

ρR
B

ρG
B

ρB
B

,  e = 
eR

eG

eB

 , ρAB = 

ρR
AB

ρG
AB

ρB
AB

.

(3)

The observed vector ρA(x) = ρR(x),  ρG(x), ρB(x) t  at pixel
x on A is then described as follows:
ρA(x) = wb2

A (x) ρA +  wib
AB(x) ρB +  wi2

A(x) e +  wbb
AB(x) ρAB.

(4)
Thus the observations from A can be expressed in a linear
combination of the four color components which are the two
object colors of A and B,  the light-source color, and the
body interreflection color.

surface Asurface B

light source

E(λ) YA(x,  λ )

sensor

interface-interface

interface-body

body-body
body-interface

body

interface

Figure 1  Observation of interreflection between  two surfaces.

Estimation of Illumination Color

Because specular highlights include almost no
interreflection effect, we can use highlight regions in the
measured color image to estimate the illumination color e.
We have two approaches for the illumination estimation.

First, suppose that we have a single highlight region
from a specular surface.  We can use the pattern of color
histogram to cluster the pixel data into interface and body
reflection terms.   The illuminant color is estimated from the
directional vector of the interface cluster on the color
2

histogram.   The algorithms are given by Klinker et al.7 and

Tominaga8.
When we have more than two highlight regions from

different objects,  the illuminant estimation can be made
even more reliably  by using the algorithm by Tominaga and

Wandell3.  This algorithm takes advantage of the fact that
each surface spans a two-dimensional color signal plane and
that the intersection of the planes is a vector in the direction
of the illumination color.

Estimating Reflection Components

Definition of chromaticity sphere and plane
To analyze the chromaticities of the observed colors,

we define the chromaticity sphere.  In this system the
chromaticity coordinates for any observed color are
specified on the basis of the chromaticity of illumination,
which is different from the CIE xy-chromaticity plane.
Figure 2 depicts this chromaticity sphere.  All color vectors
are normalized to a unit length, and mapped onto a unit
sphere in a three-dimensional color space.   Moreover we
define the chromaticity plane.  This plane is defined as a
tangent plane that touches the chromaticity sphere at the
illumination color vector as shown in Figure 2.
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Figure 2   Chromaticity sphere and plane.

Chromaticity sphere:
In this system, the chromaticity of illumination is given

as cL = 0, 0, 1 t.  This vector cL and the chromaticity
vectors of two object colors cA and cB form a spherical
triangle.  The chromaticity of any observed color vector
without interreflection effect is located theoretically in this
spherical triangle.  The polar coordinate system ( φ, θ )  is
useful to represent the chromaticity in terms of hue and
saturation, where the angle Θ corresponds to hue.
Chromaticity plane:
 This plane is the tangent plane touching the
chromaticity sphere at cL.  A point on the chromaticity
sphere is easily mapped onto the chromaticity plane.  We
extend a line connecting the origin and any coordinate point
on the sphere.  This extension line intersects the
chromaticity plane.   The coordinates (c1', c2') on the plane
55
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can then be computed from the coordinates (c1, c2, c3) on
the sphere as
      c1' = c1 / c3,    c2' = c2 / c3.   (5)
The illumination and two object colors form a triangle in
this coordinate system.   All the chromaticities observed
from two surfaces fall in this triangle, unless the body
interreflection occurs.

Estimation of object colors
The chromaticity vectors of object colors c'A and c'B

are estimated from the chromaticity distribution of the
measured image.  Since these two vectors are two vertices
of the triangle, the chromaticity estimation is reduced to
determine the two vertices from the observed data on the
chromaticity plane.

The coordinates of the vertices are determined in two
steps.  First we determine the hue angles θA and θB from
peak analysis of the hue histogram.  That is,  we devide the
whole angle of θ into a proper number of equal intervals to
make the histogram, and find the segments corresponding to
two peaks.  Second, the farthest points  from the origin cL

are extracted from the data sets which belong to the same
segments of θ.  Let ri be the distance between a chromaticity

point from the origin.  Then the estimates for c'A and c'B
are represented in the polar coordinate system as

c 'A  = (max ri, θA)
              i           

,    c 'B  = (max ri, θB)
              i           

. (6)

Estimation of body interreflection color
When the body interreflection occurs between two

surfaces, the observed chromaticity coordinates do not
always fall in the triangle on the chromaticity plane, but the
distribution expands outside a triangle by cL,  c'A and c'B as
shown in Figure 3.   Note that the two chromaticity clusters

MA and MB located outside the segment c'Ac'B  represent
the strong effect of the body interreflection.  Image regions
with this property correspond to the most close regions of
two surfaces  on the image.   Hence we cut out two clusters

of the body interreflection by the segment  c'Ac'B, and
extract the corresponding two image regions containing the
body interreflection effect.
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Figure 3  Chromaticity distribution of two surfaces containing
body interreflection.
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The RGB data in the extracted region are described as
the linear combination of two color components ρA and ρAB

for the surface A, and two color components ρB and ρAB for
the surface B.  The vectors  ρA and ρB are already estimated
in the above, and only ρAB is unknown as a common vector.

Therefore the intersection algorithm3 is applicable for
estimating ρAB.

 Image Decomposition

The measured image is decomposed into the reflection
components by using the estimated color component
vectors.   For this decomposition, we have to determine the

four weighting coefficients wb2
A (x), wib

AB(x), wi2
A(x), and

wbb
AB(x) in Eq.(4) at each pixel.   Note that the four unknown

coefficients cannot be determined in the standard regression
analysis because the image data are three-dimensional in a
RGB space.  In other words,  we cannot determine four
unknowns from only three observations.

We propose a solution method for this image separation
problem by applying a linear programming technique.  We
use the constraints that all the unknown weighting
coefficients must have non-negative values.  Let us consider
the estimation problem of the coefficients as the problem of

minimizing the following absolute value of the residuals9:
ρA(x) - wb2

A (x) ρA- wib
AB(x) ρB- wi2

A(x) e - wbb
AB(x) ρAB → min

(7)
  First define several matrices and vectors.   A matrix A
and a vector w are defined as

A = aij  = a1, a2, a3, a4

 = [ρA, ρB, e, ρAB]
    (8)

w = [wb2
A , wib

AB, wi2
A, wbb

AB]t.     (9)
For simplicity the observation vector is rewritten as

b = ρ(x) .    (10)
The residual vector r is then described as follows:

r = r1, r2, r3
t = b - Aw .           (11)

Note that ri (i=1, 2, 3) is either positive, zero, or negative.
When we split up ri into two cases of non-negative and

negative, we have either  ri = ri
+ ≥ 0 or  ri = - ri

- ≤ 0, i.e.
ri = ri

+ - ri
- with ri

+ × ri
-  = 0.  Thus the absolute values of the

residual become ri  = ri
+ - ri

-  = ri
+ + ri

-.  Therefore the
performance index of Eq.(7) can be written as

 r   = r1
+ + r1

-  + r2
+ + r2

-  + r3
+ + r3

-   .    (12)
Moreover define a solution vector y  and a 3x10
augumented vector B as

y = r1
+, r1

- , r2
+, r2

- , r3
+, r3

- , w  t                 (13)
B = I,  -I,  A   .                                 (14)

Then the constraint of Eq.(11) is written as B y = b,
where y  must be non-negative.  Finally the above
minimization problem can be reduced to the problem of
solving the minimization of  r  under the constraints

 B y = b ,    y ≥  0 .                             (15)
This formulation becomes the standard form of a linear
programming.
6
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Experiments
Figure 4 shows the measured image of yellow (left) and
green (right) plastic objects illuminated with a halogen
lamp.   Two highlight areas caused by direct specular
reflection of illumination appeared in the sides of the two
surfaces.  Interreflection effects appeared closely to the
contact line between the two surfaces.   For illumination
estimation,  highlight regions with high values of luminance
Y were extracted from the respective surfaces, and the
illumination color was estimated by finding an intersection
of color planes for two highlight regions.

The image region surrounded with a rectangle in
Figure 4 was cut out to investigate the effects of
interreflections in detail.    The RGB data in this region
were mapped onto the chromaticity plane.  The
chromaticities of the object colors were estimated based on
the hue histogram analysis.   Next, narrow regions close to
the contact line between two surfaces were extracted as the
regions with body interreflection.    The color component of
body interreflection was estimated from these two regions.

 

   
Figure 4  Image of two plastic objects.

 
(a) Object color component.   (b) Illumination
component.

  
(c) Specular interreflection.    (d) Body interreflection.

Figure 5  Four Component images.
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Finally the above separation algorithm was applyed to all
pixels of the measured image by using the estimated four
color component vectors.   Figure 5 shows the components
of the image decomposed  into the four reflection
components.

Conclusion

The present paper has described a method for estimating the
four reflection components from a single color image of
two closely apposed object surfaces.   The reflection
components corresponded to the illumination color, the two
object colors, and the body interreflection color between
two surfaces.   The objects were assumed to be
inhomogeneous dielectric materials, and a color CCD
camera was used for imaging under a single light source.

First, modeling interreflection between two object
surfaces suggested that the observed color vectors from the
surfaces were expressed in a linear combination of the four
reflection components.   Next, algorithms were described
for estimating the reflection components  from a single
image.  This estimation was performed in three steps of
estimating the illumination, the object colors, and the body
interreflection color.   A chromaticity plane is useful for
analyzing the chromaticity distribution of an image with the
interreflection effects.   Moreover, an algorithm was
proposed for separating the measured image into the
reflection components.  The feasibility of the proposed
method was demonstrated in experiments.
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