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Abstract

In this paper we present a comparison of differen
schemes for transform coding of reflectance spectra. Aim
ing for representing the spectra with a small number of co
efficients, we first concentrate on schemes using orthono
mal sets of basis vectors. In this case the basis vector s
used for analysis and synthesis of the spectra are iden
cal. Regarding the mean squared spectral error, the op
mal basis function set for a given set of test spectra can b
calculated analytically.

We then allow the vector bases for analysis and syn
thesis to be different and give an example for creating ap
propriate sets. We show that the best vector set strong
depends on the error measure that is to be minimized.
is not efficient to replace the error in a visually uniform
color space by the mean squared spectral error. Minimi
ing these two error measures yields different sets of ve
tors as they can not be minimized simultaneously. Furthe
more we show the superiority of the approach using sep
arate analysis and synthesis vector sets over orthonorm
basis vector sets.

In order to verify the results of the analytically derived
vector sets, we compare them with those of vector sets d
rived by optimization algorithms.

1. Introduction

The notation is chosen in accordance with the work o
Trussell 1. We sample a spectrum equally spaced ove
the visible range and form a column vectorf with n el-
ements. The color matching functions, which are linea
combinations of the sensitivity characteristics of the thre
different cone types of the human eye, form ann� 3 ma-
trix A = (a1; a2; a3). By multiplication we get the color
impression as a 3-vectorc = A

T
f = (X;Y; Z)T.

The physical spectrumf = Dr depends on the re-
flectance spectrumr of the object and the spectrumD of
the illumination, whereD is ann�n diagonal matrix with
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the spectrum on the diagonal. For the color vector we have
c = A

T
Dr = A

T
dr, using the abbreviationAd = DA.

Now the reflectance spectrar are approximated by the
weighted sum of synthesis functionsr �

Pm�1

i=0 wisi =
Fsw. The synthesis vectorssi are represented in the
columns of then � m matrix Fs. The weighting coeffi-
cients form them-vectorw.

These weighting coefficients are calculated as scalar
products of the reflectance spectrumr and the analysis vec-
tors tTi which are represented in the rows of the analysis
m� n matrixFa. We have

w = Far; r � r̂ = Fsw = FsFar (1)

Analysis and synthesis vector setsFa andFs are to be
constructed such, that an error measure is minimized.Fa

andFs have to meet the following two conditions:

1. The repeated application of analysis and synthesis
must not change the vectorr . ThereforeP = FsFa

has to be a projection:(FsFa)2 = FsFa.

2. It immediately follows the orthonormality condition
in form ofFaFs = I, them�m identity matrix.

We seek for analysis and synthesis vector sets that lead
to a minimal error for a test set of reflectance spectra. We
consider two error measures:

1. The mean spectral error is defined by

E

�
1

n
(r� r̂)T � (r� r̂)

�
: (2)

2. The mean color error is evaluated in a visually uni-
form color space taking a set of different illuminants
D into account. We use the modified Euclidean
distance of the two colors to be compared in the
CIELab color space as proposed in the�E�

94 for-
mula2.
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In the following two sections we propose analyti
cal derivations of orthogonal basis vector sets as well
analysis-synthesis vector sets. Afterwards we employ o
timization algorithms to be able to verify the results.

2. Orthogonal Systems

In this case we claim the analysis and synthesis vector s
to be identical,Fs = F

T
a = F. From the two above condi-

tions it follows thatF needs to be an orthonormal basis.
For minimizing the mean squared spectral error w

know the analytical solution in form of the Karhunen
Loève transform (KLT). The transform vectors are th
eigen vectors according to thek largest eigen values of the
autocorrelation matrix of the test spectra set under cons
eration. To be comparable to transform schemes that
not subtract the mean spectrum prior to the transform,
take the eigen vectors of theautocorrelation matrixinstead
of those of theautocovariance matrix.

3. Analysis-Synthesis Systems

With a large number of given test spectra and a given se
test illuminants we can analytically derive transform sy
tems that minimize the mean squared error regarding
color values. This approach, which is based on a sing
lar value decomposition of the matrix of color values, wa
introduced as theone-mode analysis3.

Therefore we have to choose a color space for the m
imization. TheL�a�b� space is obviously more uniform
to the visual perception of color differences than theXYZ
space, but it is derived by a nonlinear transform. We c
only seek the best linear approximation of this transfor
for a given set of spectra.

After collecting thep test reflectance spectrar in an
n � p matrix R, we get the3 � p matrix of color values
C = A

T
R. Given the nonlinear transformL(c) = e we

obtain the color vectore = (L�; a�; b�)T. Applying this
transform to the whole matrix of spectra yieldsL(C) = E,
again a3� p matrix. We approximateE � Ê = TC us-
ing the3� 3 matrixT. The minimal error in̂E is achieved
by T = EC

T(CCT)�1. Then the transform from a re-
flectance spectrum into the resulting color space is giv
by e = TA

T
r.

Combining then�3matrixATT of the color matching
functions of the resulting color space with the predefine
set of l test illuminantsDd=0:::l�1 we build then � 3l
matrix of the weighted color matching functionsA� =
(D0AT

T;D1AT
T; : : : ;Dl�1AT

T).
The 3l � p matrixG = A

T
�
R gives us all the color

values that we wish to reproduce with minimal error usin
the approximated spectra.

G � Ĝ = A
T
�
R̂ = A

T
�
FsFaR (3)
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Applying the singular value decomposition we get the
expressionG = USV

T. Let the set of test spectra be
sufficiently large:p > 3l. Then the decomposition yields
the orthogonal3l�3lmatrixU, the diagonal3l�3lmatrix
S, and the orthogonalp � 3l matrixV. The elementssi
on the diagonal ofS (which are the eigen values ofG)
are sorted in decreasing ordersi > si+1. Replacing the
smallest eigen valuessk; sk+1; : : : s3l�1 with zero value
leads to an approximation forG in a least mean square
sense:

G � Ĝ = USkV
T = A

T
�
FsFaR (4)

SolvingUSk = A
T
�
Fs for Fs andVT = FaR for Fa

yields the analysis and synthesis functions that we need. It
can be easily shown that replacing all but the firstk eigen
values ofS with zeros is equivalent to taking only the first
k rows ofFa and the firstk columns ofFs. In other words,
we code the spectra with the firstk coefficients of the trans-
form.

The rows of the3l � p matrix VT span a subspace
of the space formed by the rows of then � p matrixR.
Therefore there exists a solution ofVT = FaR, which is
unique and given by

Fa = V
T
R
T(RRT)�1: (5)

Herewith we have already defined the analysis vectors for
the transform coding kernel.

On the other hand, equationUSk = A
T
�
Fs consists of

3l�3l single equations to solve the3l�n variables ofFs.
Since usually3l < n, it is underdeterminate. Therefore
we can employ further constraints to the solution. Here
we try to minimize both the aforementioned error crite-
ria. At first we concentrated on the construction of vectors
to minimize the color error. Now we can determine the
synthesis vectors such, that also the spectral error is re-
duced. For natural spectra, which are relatively smooth,
we obtain the best approximation if we use “smooth” syn-
thesis vectors. In order to achieve these vectors we em-
ploy a Wiener inverse expression under the assumption of
an AR(1) model for the spectra together with a correla-
tion coefficient0 < � < 1. For such a statistical model
we can calculate the covariance matrixK. This matrix is
square (n�n) and of Toeplitz structure with�jkj on thek-
th secondary diagonal. Amongst all possible solutions the
Wiener inverse yields the one that has minimal deviation
from the assumed model.

Fs =KA�(A
T
�
KA�)

�1
US (6)

4. Systems Derived by Optimization

For minimizing the mean visual color error over a set of
different illuminants there is no analytical solution. There-
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fore what we have calculated so far is suboptimal in a v
sual color error sense because we only minimized the me
squared spectral error and the mean squared color erro
a color space which is close to a visually uniform colo
space. For comparison we calculated the mean�E�

94 error
by means of optimization algorithms. We applied a com
bination of stochastic optimization to find a good startin
point followed by a gradient scheme.

Because the analytically derived vectors offer the po
sibility to be used in a hierarchical way we also optimize
the vector sets, such that they can be used hierarchica
Let (mean�E�

94;i) be the mean visual color error aver-
aged over a set of illuminants and over a set of test spe
tra using onlyi coefficients of the transform. Then for a
set ofI vectors we would like to minimize all�E�

94;i for
i = 1 : : : I simultaneously. This can be accomplished b
taking their product

total error=
IY

i=1

mean�E�

94;i (7)

as the measure to be minimized. It was observed that t
single error values�E�

94;i were not much worse than the
error values that remain after minimizing the�E�

94;i indi-
vidually. That means by minimizing the above error mea
sure we gain the benefit of hierarchical usage with almo
no loss of reconstruction quality. The small degradatio
of quality can be due to the difficulty in finding the globa
optimum in this high dimensional problem.

We started the optimization with the analytically de
rived vectors. First we performed a stochastic optimiza
tion using the Threshold Accepting algorithm4 and took
the result as the initial point for a gradient scheme whic
is referred to as the Broyden-Fletcher-Goldfarb-Shann
(BFGS) algorithm in5.

To comply the two conditions given in Section 1 we
need additional steps in the optimization.

At first we add a step to each iteration of the opti
mization that performs an orthonormalization of the bas
vectors, respectively an orthonormalization of the analys
vectors to the synthesis vectors.

In the case of the analysis-synthesis system it is pos
ble to substitute the synthesis vectorsFs by smoother vec-
torsFs;smooth, provided that they yield the same projection
onto the space spanned by matrixA�. Like we did in Sec-
tion 3 we incorporate the desired smoothness by modeli
the spectra with an AR(1) model with a predefined corre
lation coefficient� and a corresponding covariance matrix
K. The smooth versions of the synthesis vectors are giv
by

Fs;smooth =KA�(A
T
�
KA�)

�1
A
T
�
Fs: (8)

Both synthesis vector sets lead to the same color err
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while with the smoother vectorsFs;smooth at the same time
the mean squared spectral error is decreased.

To include the smoothing into the optimization we per-
form this projection of the synthesis vectors in each iter-
ation of the optimization followed by the aforementioned
orthonormalization of the analysis set to the synthesis set.
It was observed that the optimization algorithm works very
well with this supplement, that means the results in terms
of the color error are not affected whereas the spectral error
is decreased significantly.

5. Results

The following figures were obtained using a set of 1269
reflectance spectra of Munsell chips, sampled between 400
and 700 nm in 5 nm intervals6. Our set of illuminants
consisted of the standard illuminants A, C, D65, Xe, and
F11. We compare the following transforms:

1. Orthogonal transform, minimizing the mean squared
spectral error, KLT.

2. Orthogonal transform, minimizing Eq. (7), derived
using the above given optimization.

3. Analysis-synthesis vector set, according to Section
3, spectra AR(1) modeled with� = 0:99.

4. Analysis-synthesis vector set, minimizing Eq. (7),
derived using the above given optimization, synthe-
sis vectors AR(1) modeled with� = 0:99.

Figures 1 and 2 show the first 5 basis vectors for both
the orthogonal transforms. Figures 3 and 4 show the first
5 analysis and synthesis vectors which were analytically
derived as given in Section 3. Figures 5 and 6 show the
first 5 analysis and synthesis vectors which were derived
using the optimization.

The error evaluation is divided into the mean squared
spectral error (Table 1) and the mean�E�

94;i color error
(Table 2) for a number ofi = 1 : : : 7 coefficients. Because
of the stochastic optimization different optimization runs
render results which are not identical. Although the results
are only slightly differing it should be noted that they are
only exemplary as well for the error values as for the shape
of the vectors.

Concerning both the orthogonal transforms (trans-
forms 1. and 2.) it can be stated that the mean
squared spectral error (minimized by the KLT) and the
mean�E�

94;i error (minimized with the optimized basis
vectors) are contrary to each other. Minimizing the color
error is by no means equivalent to minimizing the spectral
error.
9
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transform
i 1. 2. 3. 4.
1 9.0701 26.2012 9.9268 10.3316
2 2.8990 21.6506 4.4168 5.0851
3 0.5618 19.7249 0.8736 1.0106
4 0.2648 19.3786 0.6987 0.8237
5 0.1229 19.1538 0.3788 0.4409
6 0.0779 19.1458 0.1860 0.2391
7 0.0425 19.1400 0.1575 0.2070

Table 1: Mean squared spectral error [�1000]

transform
i 1. 2. 3. 4.
1 16.5787 16.4859 16.1975 16.1081
2 10.8818 10.3858 9.6435 9.4431
3 1.6416 0.8544 0.5304 0.4261
4 1.2552 0.4119 0.2709 0.2335
5 0.5801 0.1691 0.1266 0.1024
6 0.5302 0.0903 0.0570 0.0500
7 0.1967 0.0429 0.0181 0.0169

Table 2: Mean�E�

94;i error

Using the proposed scheme for obtaining separate vec
tor sets for analysis and synthesis (transform 3.), the colo
error can be further reduced. This is accompanied by only
a moderate increase of the spectral error compared to th
KLT. As far as the mean�E�

94;i color error is concerned,
we observe that with only three coefficients we get the
same accuracy as with six coefficients using the KLT.

Generally the analysis-synthesis transforms perform
better than the orthogonal transforms. Even the ana
lytically derived analysis-synthesis vectors (transform 3.)
yield smaller color errors throughout than the best achiev-
able orthogonal basis vectors (transform 2.).

We have developed a scheme to analytically derive
analysis-synthesis transform vectors for coding reflectanc
spectra, which outperform the best possible orthogona
transform in terms of mean color error, and which nearly
reach the error values of the best achievable analysis
synthesis vectors that can be derived by optimization.
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Figure 1: KLT basis vectors.
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Figure 2: Basis vectors minimizing Eq. (7).
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Figure 3: Analysis vectors according to Section 3.
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Figure 4: Synthesis vectors according to Section 3.
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Figure 5: Optimized analysis vectors minimizing Eq. (7).
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Figure 6: Optimized synthesis vectors minimizing Eq. (7).
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