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Abstract the spectrum on the diagonal. For the color vector we have

In this paper we present a comparison of different. A'Dr = Agr, using the abbreviatioA; = DA.

schemes foF; tfansformpcoding of reflec?tance spectra. Aim- .NOW the reflectance spectraarg approxma}ted by the

ing for representing the spectra with a small numberbf coy\lelght'Ed sum of syrjtheS|s functionss 53, Wisi =

efficients, we first concentrate on schemes using orthonor}j:sw' The synthesis vecForsi are reprgser_ﬂed n t_he
’ lumns of then x m matrix F,. The weighting coeffi-

) X X 0
mal sets of basis vectors. In this case the basis vector seglsents form them-vectornw.

used for analysis and synthesis of the spectra are identi- o .
: . These weighting coefficients are calculated as scalar
cal. Regarding the mean squared spectral error, the optj- .
roducts of the reflectance spectruand the analysis vec-

mal basis function set for a given set of test spectra can b orstT which are represented in the rows of the analysis

calculated analytically. X
. m x n matrixF,. We have
We then allow the vector bases for analysis and syn-

thesis to be different and give an example for creating ap-
propriate sets. We show that the best vector set strongly

depends on the error measure that is to be minimized. It Apalysis and synthesis vector s@sandF, are to be

is not efficient to replace the error in a visually uniform constructed such, that an error measure is minimifd.
color space by the mean squared spectral error. MinimizangF, have to meet the following two conditions:

ing these two error measures yields different sets of vec-

tors as they can not be minimized Simultaneou3|y. Further- 1. The repeated app”cation of ana|ysis and Synthesis

more we show the superiority of the approach using sep- must not change the vector ThereforeP = F,F,
arate analysis and synthesis vector sets over orthonormal  has to be a projection(F,F,)? = F,F,.

basis vector sets.

In order to verify the results of the analytically derived 2. Itimmediately follows the orthonormality condition
vector sets, we compare them with those of vector sets de-  in form of F,F; = I, them x m identity matrix.
rived by optimization algorithms.

w=F;r, r~r=Fw=FFr (1)

We seek for analysis and synthesis vector sets that lead
) to a minimal error for a test set of reflectance spectra. We
1. Introduction consider two error measures:

The notation is chosen in accordance with the work of 1. The mean spectral error is defined by
Trussell'. We sample a spectrum equally spaced over
the visible range and form a column vectbwith n el- E (l(r T (- f)> ‘ )
ements. The color matching functions, which are linear
combinations of the sensitivity characteristics of the three

different cone types of the human eye, formrax 3 ma- 2. The mean color error is evaluated in a visually uni-
trix A = (a;,as, a3). By multiplication we get the color form color space taking a set of different illuminants
impression as a 3-vector= A'f = (XY, Z)7, D into account. We use the modified Euclidean

The physical spectruni = Dr depends on the re- distance of the two colors to be compared in the
flectance spectrum of the object and the spectrubn of CIELab color space as proposed in thdz;, for-
the illumination, wher® is ann x n diagonal matrix with mulaZ.
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In the following two sections we propose analyti- Applying the singular value decomposition we get the
cal derivations of orthogonal basis vector sets as well asxpressionG = USVT. Let the set of test spectra be
analysis-synthesis vector sets. Afterwards we employ opsufficiently large:p > 3I. Then the decomposition yields

timization algorithms to be able to verify the results. the orthogonadl x 3l matrix U, the diagonadl x 3] matrix
S, and the orthogonal x 3/ matrix V. The elements;
2. Orthogonal Systems on the diagonal ofs (which are the eigen values @)

are sorted in decreasing order > s; 1. Replacing the

In this case we claim the analysis and synthesis vector segnallest eigen valuesy, sy 1,...s3—1 With zero value
to be identicalF; = F.l' = F. From the two above condi- leads to an approximation fdg in a least mean square
tions it follows thatF needs to be an orthonormal basis. Sense:
For minimizing the mean squared spectral error we A T T
know the analytical solution in form of the Karhunen- G~ G =1US V' = AEFRR (4)
Loeve transform (KLT). The transform vectors are the SolvingUS}, = ATF, for F, andVT = F,R for F,

eigen vectors according to tikdargest eigen values of the yie|4s the analysis and synthesis functions that we need. It
autocorrelation matrix of the test spectra set under consm%an be easily shown that replacing all but the firgtigen

eration. To be comparable to transform schemes that dgj| es ofs with zeros is equivalent to taking only the first
not subtract the mean spectrum prior to the transform, we. o« ofF  and the first: columns ofF.. In other words
a S 1

take the eigen vectors of theitocorrelation matrinstead e code the spectra with the filstoefficients of the trans-
of those of theautocovariance matrix form.

_ ) The rows of the3l x p matrix VT span a subspace
3. Analysis-Synthesis Systems of the space formed by the rows of thex p matrix R.

_ _ _ Therefore there exists a solution ¥f"' = F,R, which is
With a large number of given test spectra and a given set ofinique and given by

test illuminants we can analytically derive transform sys-

tems that minimize the mean squared error regarding the F, = VIRY(RR') ! (5)

color values. This approach, which is based on a singu- ) ) )

lar value decomposition of the matrix of color values, was€réwith we have already defined the analysis vectors for

introduced as thene-mode analysis the transform coding kernel. - _
Therefore we have to choose a color space for the min- O the other hand, equatidiS, = A, F; consists of

imization. TheL*a*b* space is obviously more uniform 31_ x 3l single equatlon_s 'go solve tBéx n \_/arlables ofF,.

to the visual perception of color differences than X%z Since usuallyd! < n, itis unde_rdetermlnate. T.herefore

space, but it is derived by a nonlinear transform. We carfVe can employ further constraints to the solution. Here

only seek the best linear approximation of this transform/€ 1y to minimize both the aforementioned error crite-
for a given set of spectra. ria. At first we concentrated on the construction of vectors

After collecting thep test reflectance spectrain an to minimize the color error. Now we can determine the
n x p matrix R, we get the3 x p matrix of color values synthesis vectors such, that also the spectral error is re-

C = ATR. Given the nonlinear transforfi(c) = e we duced. For natural spectra, which are relatively smooth,
obtain the color vectoe = (L*,a*,b*)T. Applying this we obtain the best approximation if we use “smooth” syn-

transform to the whole matrix of spectra yieldéC) = E thesis vectors. In order to achieve these vectors we em-
again a3 x p matrix. We approximat& ~ E = TC us,- ploy a Wiener inverse expression under the assumption of
ing the3 x 3 matrixT. The minimal error irfs is achieved ~&" AR(1) model for the spectra together with a correla-
by T = ECT(CCY)'. Then the transform from a re- tion coefficient0 < p < 1. For such a statistical model

flectance spectrum into the resulting color space is giver‘{ve can calculate the covariance mafix Tr|1]|€s| matrix is
bye = TATr. squaref x n) and of Toeplitz structure witp!*! on thek-

Combining thex x 3 matrix ATT of the color matching '\t/r\}.secor?dary d|ago|3al.hAmongs; allhp055|plg SOI|létIOITIS.'[he
functions of the resulting color space with the predefine lener inverse yields the one that has minimal deviation

set of test illuminantsDy—q.. ;1 we build then x 31 rom the assumed model.

matrix of the weighted color matching functiods, — F, = KA.(ATKA,)"'US (6)

(DoATT  D,ATT ... D;_,ATT). *
The 3l x p matrix G = ATR gives us all the color

values that we wish to reproduce with minimal error using

the approximated spectra.

4. Systems Derived by Optimization

R A For minimizing the mean visual color error over a set of
G ~ G = ATR = ATF,F,R (3) differentilluminants there is no analytical solution. There-
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fore what we have calculated so far is suboptimal in a vi-while with the smoother vectol; smootn at the same time
sual color error sense because we only minimized the meathe mean squared spectral error is decreased.
squared spectral error and the mean squared color error in  To include the smoothing into the optimization we per-
a color space which is close to a visually uniform color form this projection of the synthesis vectors in each iter-
space. For comparison we calculated the m&&if, error  ation of the optimization followed by the aforementioned
by means of optimization algorithms. We applied a com-orthonormalization of the analysis set to the synthesis set.
bination of stochastic optimization to find a good startinglt was observed that the optimization algorithm works very
point followed by a gradient scheme. well with this supplement, that means the results in terms
Because the analytically derived vectors offer the pos-of the color error are not affected whereas the spectral error
sibility to be used in a hierarchical way we also optimizedis decreased significantly.
the vector sets, such that they can be used hierarchically.
Let (meanAEg, ;) be the mean visual color error aver-
aged over a set of illuminants and over a set of test spec-
tra using only; coefficients of the transform. Then for a
set of I vectors we would like to minimize al\Eg, ; for
i = 1...I simultaneously. This can be accomplished by
taking their product

5. Results

The following figures were obtained using a set of 1269
reflectance spectra of Munsell chips, sampled between 400
and 700 nm in 5 nm intervals  Our set of illuminants
consisted of the standard illuminants A, C, D65, Xe, and
I F11. We compare the following transforms:
total error= | [ meanAE;, ; 7)
i1 ' 1. Orthogonal transform, minimizing the mean squared

spectral error, KLT.
as the measure to be minimized. It was observed that the

single error values\ Eg, ; were not much worse than the 2. Orthogonal transform, minimizing Eq. (7), derived
error values that remain after minimizing thefg, ; indi- using the above given optimization.

vidually. That means by minimizing the above error mea-

sure we gain the benefit of hierarchical usage with almost 3. Analysis-synthesis vector set, according to Section
no loss of reconstruction quality. The small degradation 3, spectra AR(1) modeled with= 0.99.

of quality can be due to the difficulty in finding the global
optimum in this high dimensional problem.

We started the optimization with the analytically de-
rived vectors. First we performed a stochastic optimiza-
tion using the Threshold Accepting algoritHirand took , i .
the result as the initial point for a gradient scheme which F19ures 1 and 2 show the first 5 basis vectors for both

is referred to as the Broyden-FIetcher—GoIdfarb—Shann(Bhe orthqgonal transforms. Figures 3_ and 4 show th? first
(BFGS) algorithm ir?. 5 analysis and synthesis vectors which were analytically

derived as given in Section 3. Figures 5 and 6 show the

To comply the two conditions given in Section 1 we first 5 analysis and synthesis vectors which were derived
need additional steps in the optimization. using the optimization.

At first we add a step to each iteration of the opti-  The error evaluation is divided into the mean squared
mization that performs an orthonormalization of the basisspectral error (Table 1) and the me&¥y, ; color error
vectors, respectively an orthonormalization of the analysi§Table 2) for a number of = 1...7 coefficients. Because
vectors to the synthesis vectors. of the stochastic optimization different optimization runs

In the case of the analysis-synthesis system it is poss¥ender results which are not identical. Although the results
ble to substitute the synthesis vectbtsby smoother vec- are only slightly differing it should be noted that they are
torsFs smooth, Provided that they yield the same projection only exemplary as well for the error values as for the shape
onto the space spanned by matAix. Like we did in Sec-  of the vectors.
tion 3 we incorporate the desired smoothness by modeling )
the spectra with an AR(1) model with a predefined corre- Concerning both the orthogonal transforms (trans-

lation coefficienty and a corresponding covariance matrix ©0'ms 1. and 2) it can be stated that the mean

K. The smooth versions of the synthesis vectors are give§jduared spectral error (minimized by the KLT) and the
by mean AEg, ; error (minimized with the optimized basis

vectors) are contrary to each other. Minimizing the color
error is by no means equivalent to minimizing the spectral
Both synthesis vector sets lead to the same color errogrror.

4. Analysis-synthesis vector set, minimizing Eq. (7),
derived using the above given optimization, synthe-
sis vectors AR(1) modeled with = 0.99.

Fs,smooth =KA, (AE:KA*)_lA’EFS. (8)
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transform 1905-1913, (November 1992).

1 1. 2. 3. 4.

4. G.Dueck and T. Scheuer. Threshold accepting: A general
1/9.0701 26.2012 9.9268 10.3316 purpose optimization algorithm appearing superior to sim-
2| 28990 21.6506 4.4168 5.0851 ulated annealingd. Comput. Phys90, 161-175, (1990).
3105618 19.7249 0.8736 1.0106 5. D. G. Luenberger.Linear and Nonlinear Programming
4 | 0.2648 19.3786 0.6987 0.8237 Addison-Wesley, Reading, Massachusetts, 2nd edition,
510.1229 19.1538 0.3788  0.4409 (1984).
6 | 0.0779 19.1458 0.1860 0.2391 6. Reflectance spectra of 1269 matt Munsell
7 | 0.0425 19.1400 0.1575 0.2070 color chips. Available via anonymous FTP at

Lappeenranta University of Technology, Finland.
ftp.lut.fi/pub/color/spectra/mspec/

Table I Mean squared spectral error{1000]
transform
1. 2. 3. 4.

16.5787 16.4859 16.1975 16.1081
10.8818 10.3858 9.6435 9.4431
1.6416 0.8544 0.5304 0.4261
1.2552 0.4119 0.2709 0.2335
0.5801 0.1691 0.1266 0.1024
0.5302 0.0903 0.0570 0.0500
0.1967 0.0429 0.0181 0.0169

~NOoOUDhWN R

Table 2 MeanAEjg, ; error

Using the proposed scheme for obtaining separate vec-
tor sets for analysis and synthesis (transform 3.), the color
error can be further reduced. This is accompanied by only
a moderate increase of the spectral error compared to the
KLT. As far as the meam\ E, ; color error is concerned,
we observe that with only three coefficients we get the
same accuracy as with six coefficients using the KLT.

Generally the analysis-synthesis transforms perform
better than the orthogonal transforms. Even the ana-
lytically derived analysis-synthesis vectors (transform 3.)
yield smaller color errors throughout than the best achiev-
able orthogonal basis vectors (transform 2.).

We have developed a scheme to analytically derive
analysis-synthesis transform vectors for coding reflectance
spectra, which outperform the best possible orthogonal
transform in terms of mean color error, and which nearly
reach the error values of the best achievable analysis-
synthesis vectors that can be derived by optimization.
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Figure 3 Analysis vectors according to Section 3. Figure 6 Optimized synthesis vectors minimizing Eq. (7).
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