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Abstract

Subjects examined image pairs consisting of an origin
and a reproduction created using either JPEG compress
or digital halftoning. Subjects marked locations on the re
production that differed detectably from the original. We
refer to the distribution of error marks by the subjects a
image distortion maps.

The empirically obtained image distortion maps ar
compared to the visible difference calculated using thre
color difference metrics. These are color distortions pre
dicted by the widely used mean square error (point-b
point MSE) computed in RGB values, the point-by-poin
CIELAB �E color difference formula (CIE, 1971), and S-
CIELAB, a spatial extension of CIELAB that incorporates
spatial filtering in an opponent colors representation prio
to the CIELAB calculation (Zhang & Wandell, 1996).

For halftoned reproductions the RMS, CIELAB, and S
CIELAB error sizes correlated with the locations marke
by subjects reasonably well, given the freedom to selec
threshold level separately for each image. The S-CIELA
metric had the most consistent threshold levels across i
ages; the RMS metric had the least consistent levels. F
JPEG reproductions, all three metrics provided poor pr
dictions of subjects’ marked locations.

1. Introduction

One application of image fidelity models is to predict th
reproduction quality at different locations within an im-
age. To test the accuracy of such models, it is necessary
have a database of experimental measurements establ
ing where subjects perceive image reproduction errors.
this paper we report a set of measurements of perceiv
reproduction errors for a set of natural images and repr
ductions of these images created using (a) digital halfto
ing (void and cluster), and (b) image compression (JPEG
DCT).

After describing our experimental methods and result
we evaluate how well three different color difference me

1Supported by a donation from the Hewlett-Packard Corporation.
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rics predict the data set. The three metrics are (a) a ro
mean-squared (RMS) error metric applied to the red, gre
and blue (RGB) framebuffer entries, (b) the CIELAB colo
difference metric, and (c) the S-CIELAB color differenc
metric, which is a spatial extension of CIELAB. We evalu
ated these metrics in order to understand the conditions
which they can be usefully applied to predict the appea
ance of distortions in digital image reproductions.

The three metrics made predictions that described su
jects’ marked locations of halftone errors reasonably we
given the freedom to choose a separate threshold level
each image. The S-CIELAB metric had the most cons
tent threshold level across images; the RMS metric h
the least consistent levels. All three metrics provided ve
poor predictions of subjects’ responses to the JPEG-DC
reproductions.

2. Methods

Six 24-bit digital color images were used as originals. Th
images included faces, objects, buildings, and natural sc
Reproductions were created for each image using two m
ods. One set of images was created using a void-a
cluster halftone method containing 32 levels. The dither
reproduction error includes dot noise that is particular
salient in some, but not other, regions of the image. A se
ond set of images was created using JPEG-DCT with t
standard quantization tables (Q factor of 50). Hence, a
tal of twelve reproductions were used in these experimen

Each original-reproduction image pair was present
on a CRT screen controlled using a Macintosh comput
The images were viewed in a dark room with light from
the computer screen only. Subjects viewed the display
a 12 inch distance. Calibrations were performed using
PhotoResearch PR-704 Spot SpectraScan spetral sca
and a PhotoResearch Auto Telephotometer, using softw
routines from the Psychophysics Toolbox on Macintosh b
Brainard (1997). From the monitor calibration data, w
computed the CIE XYZ representations of each image
shown on the CRT display. These XYZ values were us
to compute the point-by-point CIELAB and S-CIELAB
error values. Point-by-point RMS errors were compute
from the framebuffer values and needed no calibration i
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formation.
Subjects were undergraduate students at Stanford; th

were paid for their participation. Subjects were tested fo
normal color vision using a set of isochromatic plates (Ish
hara Plates). Twenty-four subjects were tested on the
image pairs.

Subjects identified regions in the image where the orig
inal and reproduction appeared to differ. They marke
these regions using the mouse. Subjects could mark
gions using a small (10 pixels in diameter, 0.4 deg), mediu
(30 pixels; 1.2 deg) or large (50 pixels, 2 deg) circular spo
The finite size of the marker limits the spatial resolution o
the measured image distortion map and we account for th
in the data analysis below. Each image pair was presen
to the subjects once or twice in randomized order.

3. Experimental Results

3.1. Data compilation

Two subjects’ data were eliminated because one of the
was not cooperative (drew little faces or wrote words o
the images instead of marking places of visible error), an
the other marked everywhere on every image. The err
marks produced by the remaining subjects were pooled f
each pair of images. From these pooled data we calculat
probability of a mark covering each pixel in the reproduc
tion, which we callimage distortion maps. Figure 1 shows
the image distortion map for an original and its reproduc
tion. The probability that a pixel is marked is represente
by the gray level: Light regions correspond to frequentl
marked areas (high visible differences) and dark regio
correspond to infrequently marked areas (low visible di
ference).

3.2. Consistency of subjects’ responses

Next, we evaluated how well different subjects agreed
their judgments concerning the locations of reproductio
errors. We use the inter-subject consistency as a criteri
against which to measure how well each of the color di
ference metrics predict the image distortion maps.

We estimate the variability of an image distortion ma
as follows. First, we assume the number of marks at ea
pixel is described by a binomial distribution. The maxi
mum likelihood estimate of the binomial parameter of eac
pixel, p, is the value of the image distortion map. Usin
this estimate of the binomial probability, we compute th
negative log likelihood (N ) of the marks made by each
subject. The averageN of all subjects data measures how
well the image distortion map agrees with each subjec
data. We use the averageN to measure the reliability of
the image distortion map, and thus to serve as a bound
how well we expect the models to perform. We do no
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Figure 1: The image distortion map for an original and its re
production. (A) The original color image is shown in grayscal
(B) The halftoned reproduction using void-and-cluster matrix
shown in grayscale. (C) The image distortion map measured
pooling the data from all observers is shown. Light regions ind
cate areas with a high probability of being marked, dark region
indicate a low probability of being marked.

expect a model to predict the data any better than the r
ability of the image distortion map.

Table 1 lists the value ofN averaged across subject
for each image. To make the numbers comparable acr
images, the likelihoods were normalized by image size a
by the number of times the image was presented. Lar
values in the table indicate larger inter-subject variabili
The values in parentheses are percentage of the image
covered by subjects’ marks, averaged over all subjects.

TheN values for two of the JPEG-DCT compresse
images are significantly smaller than the other images. T
occurred because the reproductions appeared very sim
to the original in these cases (as indicated by the perce
age of mark coverage) and there was inter-subject ag
ment concerning the locations of the small number of v
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ible reproduction errors.

JPEG Halftone
N (%coverage) N (%coverage)

face 0.1984 (0.260) 0.2423 (0.653)
flowers 0.2666 (0.333) 0.2545 (0.513)
hats 0.2515 (0.314) 0.2015 (0.591)
house 0.0474 (0.029) 0.2093 (0.586)
rafting 0.1667 (0.170) 0.2197 (0.311)
wall 0.0471 (0.029) 0.1520 (0.314)

Table 1: Consistency of image distortion map data. We use the
average negative log likelihood,N , of an individual subject’s
performance given the image distortion map to measure inter-
subject variability. Larger values represent larger variability.
The values in parentheses are percentage of coverage by sub
jects’ marks for each image. See text for details.

4. Predictions

4.1. Error models

The RMS error values were computed as point-by-point
vector length of the RGB difference image between an
original image and its reproduction. For example, the point-
by-point RMS error at position(i; j) of the images is:

RMSij =
q
(�Rij)2 + (�Gij)2 + (�Bij)2 (1)

where�R, �G, and�B represent the difference in R,
G, and B values between the original color image and the
reproduction.

The point-by-point CIELAB errors were computed from
XYZ values of an original image and its reproduction. We
use the standard CIELAB color difference formula (CIE,
1971) to compute CIELAB errors. The result is an error
map with one�E value per pixel.

The S-CIELAB errors were computed using the method
described in Zhang & Wandell (1996)2. The result is also
an error map with one�E value per pixel.

4.2. Simulations

The image distortion maps cannot be predicted directly
from the model errors because of (a) the size of the mark-
ers, and (b) the variability in positioning the cursor. To
predict image distortion maps from the model errors, we
simulate the experiment using a two step procedure.

2Software for performing this computation is available on the internet
at: http://white.stanford.edu/scielab/.
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igure 2: The error maps computed using three different metrics.
he three panels show error maps computed using the (A) RMSE,

B) CIELAB, and (C) S-CIELAB methods.

1. We convert the error measure at each point to a prob-
ability of selecting that point, using the function

p̂ = 1� exp(�(
x

t
)a) (2)

The valuex is the error measure computed from spe-
cific metrics,a is the acceleration parameter, andt is
the threshold parameter. This function relates com-
puted error measures to probability of each pixel be-
ing marked. The valuet is the�E or RMS value
at which the probability of marking a pixel is about
63%. The parametersa andt are estimated from the
image distortion maps.

2. We convert the probability of marking each pixel to
an image distortion map by convolving the pixel-
marking probabilities with a kernel of the same size
and shape as the smallest marker used by subjects
in the experiments. The kernel values sum to one,
thus preserving the mean. The convolution simu-
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lates the effects of the marker size and the variabili
in marker placement.

Using this simulation, we derive a predicted image disto
tion map from the errors predicted by each of the metric
In the next section, we compare the observed and predic
image distortion maps.

5. Evaluations

Images with halftone errors and JPEG errors are analyz
separately, because they represent different types of d
tortions. The halftone distortions generally are a rando
texture noise, while the JPEG distortions generally inclu
blurring and blocking artifacts.

5.1. Halftone distortions

To fit the data with each model, we must specify the p
rametersa andt that relate the error value to the probabi
ity of marking a location. To begin the analysis, we chos
a single acceleration parameter,a, for each model and used
this parameter for all halftone image pairs. The thresho
parameter,t, varied across images.

Metrics: RMS CIELAB S-CIELAB
face 0.2779 0.2696 0.2738
flowers 0.2832 0.2918 0.2811
hats 0.2454 0.2441 0.2411
house 0.2401 0.2419 0.2387
rafting 0.2584 0.2514 0.2483
wall 0.2122 0.2505 0.2183

Table 2: Quality of fitting model outputs to data: Negative log
likelihood errors for halftone images. The likelihood errors are
normalized for image size so that the numbers are compara
across images.

For each image, the overall model error in predictin
the image distortion map for each image pair is listed
Table 2. These values can be compared directly with t
inter-subject variability,N , in Table 1. The table shows
that when the threshold value is free to vary across imag
each metric can predict the image distortion map about
well as the precision of the data.

Figure 2 is a more detailed examination of the pre
dicted image distortion maps from the three metrics. T
predicted distortions maps agree with the data at a coa
scale. On a finer scale, there are regions where each m
ric makes incorrect predictions. Figure 3 shows the r
gions where each metric deviates most from the data in
”Flowers” image. As expected, CIELAB fails mainly in
the high frequency regions of the image (such as the blin
1

ty

r-

on the window), due to lack of spatial sensitivity mecha-
nisms in the metric. Over relatively constant regions, both
CIELAB and S-CIELAB did better than RMS (such as the
large flower in front).
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Figure 3: Regions of largest deviation between model and data
Each panel indicates those image regions within the highest quin
tile ofN for the RMS (A), CIELAB (B) and S-CIELAB (C) mod-
els. Regions in the lower four quintiles are shown as white.

A useful image metric should make consistent predic
tions across different images, so that interpretation of th
�E or RMS values are meaningful in practice. In fitting
the models to the data, we have allowed different thresh
old parameterst in the psychometric functions for each
image. The psychometric functions that relate model er
ror measures with detection probabilities for all halftone
images are plotted in Figure 4.

Figure 4 shows that S-CIELAB had the most consisten
threshold predictions across images. The�E values cor-
responding to 63% detection (t values)are between 2 and
5�E units, consistent with the traditional interpretation of
�E values. The CIELAB values ranged from 4 to 20�E
units at 63% detection. Thus, a�E value of 10 was pre-
dicted to be nearly always visible in one image, but visible
less than half the time in another image. The RMS thresh
old values were the most variable across images, rangin
an order of magnitude, from 0.036 to 0.36 (the largest pos
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Figure 4: Psychometric functions that relate�E or RMS val-
ues to detection probabilities, fitted to image pairs with halfton
distortions. In each plot, one curve represents one image pair.

sible RMS error is 1.732).
Figure 5 is a graphical evaluation of the cost (increas

negative log likelihood errorN ) of fixing the threshold
level,t, across all images. A model with consistent thres
olds across images pays no cost, and a model thresho
that vary greatly across images pays a large cost. As sho
in the plot, when the threshold is fixed, the RMS model e
ror is increased more than the S-CIELAB error. Hence, t
RMS threshold is less consistent than S-CIELAB acro
images.

5.2. JPEG distortions

None of the models made satisfactory predictions of t
marked errors in the JPEG-DCT reproductions. Figure
shows the probability a location is marked as a functio
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Figure 5: The increased error caused by fixing the threshold pa-
rameter for the halftone images. Each point represents the in-
crease inN for a single image as measured by the RMS model
(horizontal axis) and S-CIELAB model (vertical axis). Fixing the
threshold increases the RMS error more than the S-CIELAB er-
ror.

of RMS, CIELAB, and S-CIELAB error measures. The
subjects did not mark high predicted error regions much
more frequently than lower predicted error regions. Hence,
we have performed no further analyses on the models.

Given the nature of JPEG artifacts and the characteris-
tics of the three color difference metrics, it is not surprising
that none of them performed well in predicting visibility
of JPEG-DCT distortions. The JPEG-DCT artifacts arise
from (1) the coarse quantization of high frequency compo-
nents, and (2) the block processing structure of the algo-
rithm. In the case of quantization, the errors are typically
correlated with lines or edges in the images, and therefore
hidden by the effect of orientation selective masking and
contrast masking (Legge & Foley, 1980; Losada & Mullen,
1994; Limb, 1979; Chaddha & Meng, 1993). The image
distortions metrics evaluated here do not include effects of
contrast masking or orientation selective masking. Hence,
these metrics should not be expected to make accurate pre-
dictions about visibility of JPEG artifacts.

6. Conclusions

Subjects identified visible reproduction errors in a collec-
tion of halftone and JPEG-DCT reproductions. The re-
sponses were summarized as image distortion maps. Us-
ing these maps, we evaluated three image distortion met-
rics: RMS, CIELAB, and S-CIELAB. The metrics all per-
formed reasonably well in predicting relative size of vis-
4
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Figure 6: Probability of marking a location as a function of pre-
dicted error for JPEG-DCT reproductions. The panels show th
relationship for the RMS, CIELAB and S-CIELAB metrics. Th
different lines within each panel represent data for different im
ages.
12
ible halftone noise in individual images. The S-CIELAB
metric made the most consistent predictions across image
and RMS was the least consistent. The CIELAB metric
was designed to be used on large uniform targets only
therefore it made most mistakes at high spatial frequenc
regions of images. The S-CIELAB metric did much better
at the high frequency regions of images due to its addition
of spatial-color sensitivity mechanisms. The RMS metric
was calculated on RGB frame buffer values, which is not
a perceptually meaningful color space. It also does not in
corporate spatial sensitivity in the calculation. Therefore,
it is surprising that RMS did not fail completely in predict-
ing halftone errors. This remains to be understood.

All three metrics failed to predict the image distortion
maps measured with JPEG-DCT reproductions. We sus
pect this is due to the lack of contrast masking and orien
tation selective masking in these metrics.
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