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Abstract

Under a large variety of scene illuminants, a human
observer sees the same range of colors; a white piece of
paper remains resolutely white independent of the color of
light under which it is seen. In contrast, color imaging
systems (e.g. digital cameras) are less color constant in that
they will often infer the color of the scene illuminant
incorrectly. Unless the color constancy problem is solved,
color appearance models cannot be used to guide image
processing, and such processing is necessary for  accurate
(and acceptable) color reproduction.

In this paper we present a new theory of color
constancy, Color by Correlation, which solves for the
white-point in images by exploiting the correlation that
exists between image colors and scene illuminants.  For
example,  because the reddest red camera measurement can
only occur under the reddest red light we say that the reddest
camera measurement correlates strongly with the reddest
light. Importantly all camera measurements correlate to a
greater or lesser degree with different colors of light. By
examining the correlation between all image colors and all
lights we show that it is possible to make a very accurate
estimate of the color of the scene illuminant.

Color by Correlation not only performs significantly
better than other methods but is a simple, elegant solution
to a problem that has eluded scientists working on color for
over a century1.

Introduction

In our work on testing color appearance models we have
found that several of the models perform well when asked to
compensate for a range of illuminants2.  The main factor
prohibiting the use of such models in digital photography
(and probably most other applications) is the requirement
that the color of the scene illumination must be known. In
most situations we simply do not have this information.

In processing the digital camera image we must either
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measure the color of the scene illumination or estimate its
color from the image data.  Of course in working on digital
imaging systems it is not practical to have an illumination
sensor and expect users to calibrate to a white reference. If
biological imaging systems achieve color constancy without
an illumination color sensor, then it should be possible for
us to achieve color constancy from just the image data
(otherwise we would have evolved with spectrophotometers
and white reference tiles mounted on our foreheads! - see
figure 1).

The invention described here3 is an improvement on an
earlier technique4 to determine the color of illumination in a
scene.

Figure 1:  What we would look like if our color vision had
evolved using color appearance models.

Previous Methods
Many solutions have been proposed for the white-point

estimation  problem. Land5, Buchsbaum6, and Gershon7, and
others proposed that the average color of a scene is gray and
so the white-point chromaticity corresponds to the average
image chromaticity (we refer to this method as Gray World).
Land8 proposed that the maximum pixel responses,
calculated in the red, green, and blue color channels
individually, can also be used as a white-point estimate (we
refer tho this method as Max.RGB). Maloney9 & Wandell10,
Dzmura11,12 & Iverson, Funt13 & Drew and others have
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formulated the white-point estimation problem as an
equation-solving exercise. In contrast, Tominaga14&
Wandell, Funt15, Tsukada16, Drew17 and others have shown
that in principle the white-point might be found by
exploiting the physics of the world, for example by finding
specularity or interreflection regions in images. All these
methods are similar, however, in the respect that they afford
poor estimation performance18,19,20. These methods fail
because they make assumptions about images which do not
in general hold: the average of a scene is not always gray,
and specularities may or may not appear in images (and
when specularities do appear they are not easily found). Each
of the methods is easily discredited.

That these methods fail has inspired other authors to
search for color constancy algorithms which are based only
on weak (that is reasonable) scene assumptions. Forsyth21

developed a theory of estimation based soley on the
observation that the range of colors measured by a camera
(or the eye) depends on the color of the light (the reddest red
color cannot occur under the bluest light). This idea was
refined by Finlayson4 (the Color in Perspective method) who
observed that illuminant color is itself quite restricted.

Because the Color in Perspective method is the closest
precursor to the correlation method presented here it is worth
reviewing the details of how it works. In a preprocessing
stage, Color in Perspective calculates models of plausible
surface colors and plausible illuminant colors. These
correspond to bounded regions of chromaticity space. A
chromaticity image, of many surfaces viewed under a single
scene illuminant, must be simultaneously consistent with
both these constraint sets. That is, solving for color
constancy amounts to a constraint satisfaction task; the
output of Color in Perspective is the set of possible
estimates of the white-point in an image. The mathematics
of how Color in Perspective solves the constraint task is
somewhat laborious (it involves calculating and intersecting
many convex constraint sets). In addition, the method is
highly sensitive to spurious inconsistencies. For example
the presence of an aperture color in an image can force the
solution set to be empty.  The correlation method presented
in this paper can be used to calculate the Color in
Perspective constraint set. However, the new method is very
much simpler (faster!) and is also more robust (is not
sensitive to spurious outliers).

Adopting only the weak assumptions made in the
Forsyth and Finlayson methods makes it impossible to
return a unique estimate of the white point. Rather, a range
of possible answers is returned, any one of which might be
possible. Of course a single estimate must still be chosen
from this set, and a variety of estimators have in fact been
proposed for this task. Forsyth suggests that after white-
balancing (discounting any color biases due to illumination),
the image colors should be as colorful as possible.
Finlayson and Hordley22 propose the mean as a more robust
estimate, and D’Zmura and Iverson23 (and Brainard and
Freeman24) suggest a maximum likelihood estimation. The
latter estimator is particularly relevant to this work since our
proposed solution can, as a special case, also support the
maximum likelihood case. However, unlike the D’Zmura
and Iverson method, our solution is computationally simple.
Our method is so simple that maximum likelihood
estimation could be provided at video frame rate.

The key observation that we exploit in our method is
that the number of colors, and the range of white-points that
a camera can sense, is finite. That is the white-point
estimation is an intrinsically discrete problem. Funt25 et al.
recently proposed white-point estimation as a discrete neural
computation problem. Here, image chromaticities are fed
into a `trained' neural network which then returns a white-
point estimate as output. Unfortunately, this method works
as a `black-box' and so one cannot say too much about the
estimates that are made, such as the estimate confidence.
Moreover, physically impossible estimates can also be
made.

Color by Correlation

The new method proposed here uses a "correlation matrix
memory" or "associative matrix memory" which will not
only achieve equivalent results to the Color in Perspective
method, but will improve the method by adding Bayesian
statistics to the process.

In this new method, a correlation matrix memory is
built to correlate the data from any image (for example, a
RGB image from a digital camera) to the set of possible
scene illuminants. The vertical dimension of the matrix
memory (the columns) is a rearrangement of the two-
dimensional chromaticity space into a list of binary (1-0)
points. For a particular color (formed under a particular
illuminant), a point (chromaticity coordinate) is set to 1 if
and only if that color can occur under that illuminant.  For
example, the reddest red chromaticity can only occur under
the reddest illumination. The horizontal dimension
corresponds to a list which corresponds to all plausible
illuminants as seen by the device. To compute the data for
the matrix, a set of reference surface colors are used (these
could be a color chart or a set of standard surfaces).  For each
column (which corresponds to an illuminant), the
chromaticities of the reference set are computed: the
illuminant is multiplied by the reference surface reflectances,
and the chromaticities as seen by the imaging device are
calculated (plotted in figure 2a).  The reference gamut for
this illuminant is simply the polygon found when we take
the convex hull of the points (figure 2b).  Then in the
column corresponding to that illuminant, the chromaticities
of the points within this reference gamut are turned on (set
to 1), and the others are turned off (set to 0). (In figure 2c
the first column of the matrix corresponds to the shaded
polygon plotted in figure 2b, which contains the
7
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chromaticities of the reference gamut under illuminant 1).
This procedure is repeated for each column corresponding to
all the illuminants.  In practice, the number of illuminants
can be limited to the precision of the desired results. (For
example we may want to choose an illuminant from a group
of 10 sources.)
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Figure 2:  Building a correlation matrix memory:  a) first a set o f
reference surfaces illuminated by a particular source are plotted
in chromaticity space, then b) by taking the convex hull o f
these chromaticities, we obtain the reference gamut for this
illuminant, and finally c) a rearrangement of the chromaticities
are listed in the matrix where 1 denotes the presence of the
chromaticity in the reference gamut and 0 denotes its absence.

The above steps depend on the spectral sensitivities of
the detector, the reference surfaces, and the illuminants, all
of which are known for the reference image.  This procedure
is performed as part of the design or calibration of the
imaging device.  No assumption made of device linearity nor
of spectral basis.

Estimating the white point
When the camera produces an image, the RGB data is

converted to chromaticities and a vector is created
corresponding to the values existing in the scene (left most
binary vector in figure 3). This vector similar to the
columns in the matrix memory, but contains 1's in the
positions of chromaticities that appear in the image and 0's
for chromaticities that do not appear in the image.
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Figure 3: Image data is then plotted in the same chromaticity
space and a list of these chromaticities is listed in vector form.

Next, we multiply this vector with each column in the
correlation matrix giving a new matrix (figure 4).  In this
new matrix every row that represents a chromaticity that did
not exist in the image contains all zeros, and the rows
representing chromaticities that were in the image have data
values of either 0 or 1 (a 1 indicates that a particular image
chromaticity is consistent with a particular illuminant, and a
0 indicates inconsistency). Another way of thinking of this
is that the rows are turned off or allowed to be left on (as
they were in the correlation matrix) depending on the
existence of that color in the image.
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Figure 4: Multiplication of the image vector by the rows in the
correlation matrix turns on the rows that exist in the image and
turns off the rows corresponding to non-image chromaticities.

Each column is then summed, and the resulting values
form a sum-vector that represents the number of image
chromaticities which are consistent with a given illuminant.

In our example, the image vector has 7 components
equal to 1 and the sum-vector is:

4 7 5 3 2 4 4 1
It is apparent that 4 of the input colors are consistent with
the first illuminant, 7 with the second, 5 with the third, and
so on. The 2nd illuminant is consistent with all 7 input
colors and so is the correct answer.
Ideally, if there are 7 input colors we should threshold the
8
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sum-vector at a value 7, so applying this threshold results in
the binary vector:

0 1 0 0 0 0 0 0.
Notice only the 2nd component is 1 and this indicates that
all input colors are consistent with the 2nd illuminant. In
practice, however, a threshold which is less than 7 might be
chosen (since aperture colors will not in general be
consistent with other image colors). Thus, in this case, we
find the illuminant that is most consistent with the input
colors.

The operation of the algorithm depicted in figures 3 and
4 can also be described as follows:

If M is the correlation matrix, v is the vector
chromaticity representation of the image, and vt is the
transpose of v, then the sum-vector in figure 4 is simply:

vtM

Adding Probability
Interestingly, when the matrix M has elements set to 1

then this can be shown to be a very specific incarnation of
the Bayesian statistical model. Specifically, all colors under
a particular illuminant are assumed to be equally likely, as
are the illuminants themselves.  This is also equivalent to
the previous Color in Perspective method (the equivalence is
true for the case where the threshold value is equal to the
total number of image chromaticities).

Given experimental data, we can update the correlation
memory to exploit the full power of Bayesian statistics.
Remember that the element at row i and column j of the
correlation matrix memory is set to 1 if the ith image
chromaticity is consistent with the jth illuminant. Let us
suppose that we know the probability that chromaticity i
occurs under illuminant j: p(i|j) (this is easily determined
experimentally or from a theoretically determined
distribution - figure 5 is one such distribution). Then Bayes’
rule allows us to calculate the probability of illuminant j
given the fact that chromaticity i appears in an image: p(j|i).
Assuming independence of the surface reflectances that could
appear in a scene, the probability of illuminant j given
image chromaticities i and a second image chromaticity, k,
is proportional to: p(j|i)p(j|k). Denoting log probabilities as
p' then p(j|i)p(j|k) becomes p'(j|i)+p'(j|k).

If we initialize the position i,j in the correlation matrix
to the value p'(j|i), then the correlation matrix memory
approach can be used to find the most probable estimate of
white.  In this framework the maximum value in sum-vector
corresponds to the most likely illuminant.

Experiments

We evaluated our new algorithm by testing it on a large
number of synthetic images generated by taking a random
subset of surface reflectances from the Munsell set. Though
we have also tested our algorithm on real digital camera
images, (and observed equally good performance) these
synthetic images have the advantage of allowing us to test
our algorithm quickly on hundreds of different images and to
compare our technique easily to other approaches, such as
Color in Perspective and Gray World.

It should be emphasized here that these tests favor
methods such as Gray World – a random sampling of the
Munsell surfaces do average to gray if enough surfaces are
considered.  Therefore we expect the Gray World approach to
converge to the correct answer.  If we obtain better
estimation of the illumination than the Gray World approach
in this framework, we would expect considerably greater
superiority if we were to test more realistic situations where
we know the Gray World approach would fail.

To form an image we require three components: surface
reflectances, illumination, and sensors. For our experiments
we randomly selected surface reflectances from a set of 462
Munsell26 chips (the results below show how the algorithm
performed when given images of between 5 and 25 surface
reflectances).  We selected an illuminant for each image from
a set of common illuminants. These included Judd's27

daylights together with a variety of tungsten and fluorescent
lights. Finally, for our sensors we used three reasonably
narrow band digital camera sensors.

Given a surface reflectance S(λ), an illuminant spectral
power distribution E(λ), and a set of sensor spectral
sensitivities Rk(λ), a sensor response Pk is given by:

Pk = ∫{S(λ)E(λ)Rk (λ)} dλ.
The set of sensor responses generated in this way form the
synthetic image which is the input to our algorithm.

Before running our algorithm, we precompute the
probability distributions described in the previous section,
for each of our possible illuminants. For a given image, the
algorithm calculates chromaticities, and uses these values
together with the probability distributions, to generate a
likelihood for each illuminant. Once we have computed a
probability for each illuminant we can choose our estimate
of the illuminant in a number of ways:  we can choose the
maximum likelihood, the mean likelihood, or a local area
mean24.  In the case of the Color in Perspective method -
where all surfaces are deemed equally probable - we want to
use a mean selection22.
9



The Fifth Color Imaging Conference: Color Science, Systems, and ApplicationsThe Fifth Color Imaging Conference: Color Science, Systems, and Applications Copyright 1997, IS&TThe Fifth Color Imaging Conference: Color Science, The Fifth Color Imaging Conference: Color Scien Copyright 1997, IS&T
10
20

30
40 50 60

r/(r+
g+b)

10
20

30
40

50
60

g/(r+g+b)

 0
0.

1
0.

2
0.

3
0.

4
0.

5
pr

ob
ab

ili
ty

Figure 5: A probability distribution of the chromaticity i
occurring under illuminant j: p(i|j).

Results

Figure 6 plots the CIELa*b* delta E errors between the
estimated illuminant and the known illuminant (the correct
answer), versus the number of surfaces in the test image.
Each data point used to generate the curves is an mean of
100 estimates.  The solid line summarizes the Gray World
algorithm performance, dotted line for the Max.RGB (retinex
type) method, short dashed line for Color in Perspective and
long dashes for the new algorithm being proposed.  (Similar
denotations are used in figures 7 and 8.)

When we plot the median CIELa*b* error (figure 7) the
Gray World and Max. RGB methods give similar results as
before, but the Color in Perspective methods decreases, and
the Color by Correlation method drops to zero after only ten
surfaces - which means that over half of the
estimates calculated are perfect.  In figure 8 we have
plotted the percentage of times an estimate is obtained with
delta E less than 5 units. The Color by Correlation gives
much better performance than the other techniques, even
when only a few surfaces are contained in the image.

Clearly the correlation matrix technique performs
considerably better than the other methods.  Certain
illuminants perform extremely well (tungsten), and some
illuminants are more difficult to distinguish due to their
similarity to neighboring illuminants (D65 and D75).  In all
cases, the correlation matrix gives a smaller error.
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Figure 6: Plot of mean CIELab delta E difference between the
estimated illumination color and the correct illumination color
for synthetic images created using random collections o f
Munsell surfaces under 32 different illuminants.  The estimation
techniques include: Gray World estimation (solid line), Max.
RGB estimation (dotted line), Color in Perspective correlation
Matrix (short dashed line), and correlation matrix with
probability (long  dashed line).
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Figure 7: Plot of median CIELab delta E difference from the same
data shown in figure 6.  The Color by Correlation method (long
dashed line) gave zero error (perfect illuminant estimation) in
more than half of the estimates calculated  even with onlu 10
surfaces in the scene.
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Figure 8.  This set of curves shows the percentage of times the
given methods give an illuminant estimate within 5 CIELab
deltaE units of the correct answer as a function of the number o f
surfaces in the image.

Conclusions

Color by Correlation is a simple and elegant solution to the
color constancy problem, that gives consistently better
results than other methods.  Since the method is based on
constraints of possible illuminants in addition to probability
statistics, it exploits the advantages of several previous
techniques without the disadvantages (Gray World failure, for
example).
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