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Abstract

Color devices are not colorimetric. It follows then that
some color correction must be done to map device RGBs to
XYZ’s. One common correction method involves finding
the linear transform which takes device spectral sensitivi-
ties as close to the XYZ color matching curves as possible
(in the least-squares sense). Thereafter, this transform is
used to map device RGBs to XYZs. It is well known that
this procedure is statistically justified so long as one as-
sumes that all spectra with positive and negative power are
equally likely to occur i.e., so long as one is maximally ig-
norant about the world. In this paper we point out that the
maximally ignorant stance is unjustified since spectra with
negative power cannot physically occur. This leads us to
develop the notion of maximal ignorance with positivity
i.e., we assume that all spectra which are everywhere all
positive are equally likely. We demonstrate that this new
maximal ignorance stance delivers considerable benefits in
terms of improved color correction.

Introduction

XYZ tristimuli values are needed for accurate color repro-
duction. Unfortunately color devices are rarely colorimet-
ric. That is to say the colors a device sees (e.g. RGBs) are
not equal to XYZ tristimulus values. Getting a color device
to see tristimuli is called color correction. Typically the
correction procedure involves measuring the device re-
sponse for some calibration set of spectra. A mapping
scheme is then derived which takes device RGBs to XYZs.
The scheme might involve a look up table with
interpolation® or alternately (and the focus of this paper)
RGBs might be mapped to XYZs using a single linear
transform!2 However, in both cases good correction incurs
an associated calibration cost.

The maximum ignorance approach to color correction
is a method which operates without an explicit calibration
data set and so without calibration cost. Instead the trans-
form used for color correction is defined to be the mapping
which best takes the device response functions onto the
XYZ matching curves. This maximum ignorance approach
to color correction is justified on two counts. First, Horn*
(and more recently Vora and Trussell'?) has shown that
perfect color correction for any color stimulus is possible if
and only if the device sensitivities are a linear transform
from the color matching functions. Second, it is well
known that when the world of color stimuli is populated

with all possible spectra, with both positive and negative
power at each wavelength, all occuring with equal likeli-
hood—the so called maximum ignorance conditions—then
the best least squares mapping which takes measured
RGBs to XYZs is precisely the mapping which best takes
device sensitivities to the color matching functions.

Unfortunately, the maximum ignorance assumption
though practically useful (it is used for color correction)
does not make physical sense—spectra with negative pow-
er do not ever occur, so assuming that they do might impact
negatively on color correction. In this paper we consider
the maximum ignorance assumption with positivity: the as-
sumption that all everywhere positive spectra occur with
equal likelihood. Our hope is that by removing spectra with
negative power from consideration we will significantly
improve the color correction afforded. Indeed, simulation
experiments, reported later in this paper, indicate that this
is the case.

Linear Color Correction

Let X(A) denote the vector of standard observer color
matching functions: x(A), y(A) and z(A). The XYZ tristimu-
lus vector x corresponding to a reflectance S(A) illuminated
by a spectral power distribution E(A) is equal to,

x = ] EQSOOXd1 ()

where the integral is taken over the visible spectrum ®. Let
us denote the m (where m is typically 3) spectral sensitivi-
ties of a color device (e.g. color scanner or color camera) as
D(MA). The m-vector device response to S(A) illuminated by
E(\) is equal to:

=], EQSmDMdA @

Let us assume that the visible spectrum can be repre-
sented adequately by samples taken 10nm apart over the
range 400-700nm (this assumption is routine and forms the
basis for the linear systems approach to color vision).
Adopting this convention will allow the integrals in equa-
tions (1) and (2) to be replaced by summations. It follows
that X(A) and D(A) can be represented as 31 x 3 matrices &
and 2:

A =390+ 10i (i=1... 31) (3a)
X=X ) (3b)
D 4=D; () (3¢)
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The double subscript ;, denotes the ith row and kth col-
umn of a matrix.

Further let C(A) (the color signal) denote the product
function E(A)S(A) and ¢ its vector approximation:

¢;=EMN) S\ (3d)
the single subscript ; indexes the ith element of ¢ . It follows
that we can rewrite equations (1) and (2) as:
=1 (4a)
d=Dc (4b)

1=
9

where !is the the transpose operation.

Let the 31 X n matrix & denote a set of n calibration
color signal spectra. Each column of & contains a single
color signal spectrum corresponding to the product of some
spectral power distribution with some reflectance spec-
trum. The human observer and color device response to the
entire calibration set are captured by the 3 X n and m X n
matrices 2 and 2:

P=2'¢7 (5a)
2= (5b)

Color correction is all about mapping the device re-
sponses 2 to the corresponding tristimuli 2. The least-
squares approach to color correction sets out to determine
the 3 X m matrix 7 which best maps 2 to 2. Specifically, 7
is chosen to minimize:

17 2- 2, (6)

IIl.Il - above denotes the Frobenius norm (the square root
of the sum of squared differences between 72 and 2). It is
well known? that the matrix 7 which minimizes (6) is equal
to:

7=p2" [22']! @)

In mathematical parlance 27 [22]'! is called the pseu-
do-inverse of 2. Substituting (5a) and (5b) into (7):

7=X2¢"DID'E2DY! ®)

We can see from (8) that 7 depends only on the 31 X
31 color signal auto-correlation matrix ZZ"and the 31 x m
device sensitivities 2.

Maximum Ignorance Color Correction

Under the conventional maximum ignorance assumption
we assume that every color signal occurs with equal likeli-
hood: every component of the matrix ¢ is drawn uniformly
and randomly from the interval [- 1,1]. Relative to this as-
sumption it can be shown!? that the correlation matrix ZZ*
is proportional to of the 31 x 31 identity matrix :7 (assum-
ing that the number of color signals in C is large). Substi-
tuting Z¢Z'= 0.7 ( where o is a scalar of proportionality) into
(8), it follows that,

7=%D[DD]"! ©)]

Note that 7defined above depends only on the human
observer and color device sensitivities and as such defines
a calibration free color correction transform. Importantly it
can be shown that 7minimizes:

727 271 & (10)

That is, the transform which fits device sensor spectral
sensitivities onto the human observer matching curves is
exactly the same as the transform which maps device RGBs
to tristimuli under the maximum ignorance assumption.

Unfortunately, to arrive at the simple formula defined
in (9) we had to use sleight of hand. In particular we
assumed that the entries in #Zwere drawn from the interval
[-1,1]. This assumption does not bear scrutiny since ¢
denotes the power at the ith wavelength of light for the jth
color signal and power is a strictly positive quantity! Figure
1 illustrates the problem.

Maximum Ignorance with Positivity

Under the maximum ignorance assumption with positivity
we assume that all color signal, with strictly positive pow-
er (i.e. they are physically plausible spectra), occur with
equal likelihood. To implement this assumption we assume
that every component of the matrix #is drawn uniformly
and randomly from the interval [0,1]. Relative to this all
positive maximum ignorance assumption it can be shown?
that the correlation matrix ZZ' must be equal to:

ij
4

where as before o or is a scalar of proportionality. An illus-
tration of the structure of the 31 x 31 (for o. = 1) matrix ZZ"
is drawn in Figure 1.

The problem wizh the mazimum
igmorance assumption
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Figure 1. Two equally likely color signal spectra (according to
the maximum ignorance assumption). However, the dashed
spectrum has negative power and this is physically impossible.

Color correction under an assumption of maximum ig-
norance with positivity simply involves substituting the
correlation matrix defined in (11) (and illustrated in Figure
2) into Equation (8).
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Figure 2. The color signal correlation matrix derived under the
assumption of maximum ignorance with positivity. All diagonal
and non-diagonal entries are equal to 1/3 and 1/4 respectively.

Simulation Experiments

We carried out the following simulation experiment. First
we calculated the color correction transform which takes
the responses of a SONY DXC-930 camera to XYZ tris-
timulus values (where the viewing illuminant for camera
and standard observer is D65) using both the maximum ig-
norance and the maximum ignorance with positivity as-
sumptions. live then calculated the camera responses for
two real sets of reflectance spectra: the 462 Munsell spectra
measured by Nickerson’ and the 170 Object spectra mea-
sured by Vrhel et al.l! The camera responses were then
mapped to XYZ tristimuli using the maximum ignorance
(with and without positivity) transforms. The colorimetric
perfor mance (CIE Lab error) of these mappings is summa-
rized in Table 1. For the data considered, the correction
based on maximum ignorance with positivity delivers
much better performance.

Table 1: Statistics for CIELABAE*,, values comparing XYZ
tristimuli values with corrected camera RGBs (both camera
and XYZ tristimuli are calculated with respect to D65). Two
correction transforms are compared: first, one derived using
maximum ignorance assumption (Max Ig.) and second, one
derived under maximum-ignorance with positivity (Max Ig.
+ve).

Data Set Median AE*, | Mean AE*,,
Munsell (Max Ig.) 3.30 3.94
Munsell (Max Ig. +ve). 2.38 3.23
Object (Max Ig.) 3.27 4.13
Object (Max Ig. +ve) 2.13 3.14

We repeated this simulation experiment for the Sharp
JX450 scanner! sensitivities. Results are shown in Table 2.
Again performance is improved: under the maximum igno-
rance assumption with positivity correction error is roughly
halved. It is worth noting that for many applications a CIE
Lab error of between 2 and 5 is acceptable;>%8 only the
maximum ignorance assumption with positivity delivers
performance in this range for both camera and scanner sen-

Table 2: Statistics for CIELAB AE*,; values comparing XYZ
tristimuli values with corrected scanner RGBs (XYZ
tristimuli are calculated with respect to D65). Two correction
transforms are compared: first, one derived using maximum-
ignorance assumption (Max Ig.) and second, one derived
under the maximum-ignorance with positivity (Max Ig. +ve).

Data Set Median AE* Mean AE*

Munsell (Max Ig.) 7.93 8.09

Munsell (Max Ig. 4.27 5.45

+ve)

Object (Max Ig.) 7.70 7.92

Object (Max Ig. +ve) 4.34 5.98
Conclusion

In this paper we present a new maximum ignorance, zZero
calibrations method for color correction. Key to the method
is the assumption that all, strictly positive, spectra are
equally like to occur. This information, coupled with the
device sensitivities is sufficient to define a linear transform
for mapping device RGBs to XYZ tristimuli.

The method improves on the conventional maximum
ignorance zero calibration method, which operates under
the assumption that all spectra with both positive and neg-
ative power, in two respects. First, negative power spectra
have no physical meaning and, as such, should be ignored
in considering color correction. Second, the all positive
maximum ignorance assumption delivers substantially im-
proved correction performance.
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