
The Fourth Color Imaging Conference: Color Science, Systems and Applications—139

Design and Implementation of an 
ICC Profile Validator

Tim Kohler
Canon Information Systems, Cupertino, California

Abstract

The International Color Consortium (ICC) has developed a
useful tool for communicating color characteristics be-
tween different computers and devices. This tool is the ICC
profile, a cross-platform data file format designed for flex-
ibility and portability of color transformation data. The
ICC Profile Format Specification1 is the reference for this
format. However, the ICC format is complex and there is a
lot of room for errors and misunderstanding when creating
an ICC profile. Since many companies and institutions are
creating Color Matching Modules (CMMs), and even more
are creating profiles, it is important that each of these be in-
teroperable. Misunderstandings of the specification could
lead to problems with compatibility between CMMs and
profiles created by different vendors.

To address this issue, the ICC has formed a working
group to design some software to verify compliance with
the specification. One result of this work is the ICC Profile
Validator. This paper describes the motivation, design con-
siderations, and limitations of an ICC profile validator.

Motivation

Shortly after the ICC released the first ICC Profile Specifi-
cation, version 3.0, many of the eager users of the profile
format were confused about numerous issues. Several users
created profiles with uncertainty of their compatibility with
other systems. Also, since the vendors creating CMMs had
the same questions, users had no way to test the compati-
bility of the profiles they had created without actually try-
ing them on every system.

Many people contacted the ICC or individual member
companies, asking questions about specifics or asking if
there was some way to test their profiles for compliance.
This volume of inquiries led to the formation of a conform-
ance testing working group within the ICC. However, there
were many questions to be resolved about what the compli-
ance test should entail. The working group needed to de-
cide what level of testing should be done. Should quality be
tested? Should a profile that had the correct data structures
but produced only black output be deemed a valid ICC pro-
file? Furthermore, how was the code to be written and who
was to write it? Finally, since the ICC had prided itself on
the cross-platform cooperation in designing the profile for-
mat, how was the validator code to be created and main-
tained for at least four different operating systems? 

Early this year, the author began to develop a solution
and, in conjunction with other ICC members, a profile val-
idator became a reality. A recent breakthrough in software

technology and it’s rapid acceptance by the computer in-
dustry made it possible to solve the cross-platform issue.
The Java programming language,2 created by Sun Micro-
systems, allowed easy development of cross-platform soft-
ware such as this project. The use of Java made it possible
for a profile validator to become a reality, since only one
set of source code needs to be maintained.

Design

Three aspects of the design of the profile validator will be
discussed; the functional design, the software design, and
the user interface design. The functionality was based on
work by ICC members who helped design tests for each el-
ement of the profile format. The software design was guid-
ed by the object oriented design requirements of the Java
language, and the user interface was designed to be simple
yet useful for many types of users.

Functional Design
Many testing modalities were considered for valida-

tion, including testing profile syntax, profile content, and
CMM functionality. For this project, it was decided that
only profiles would be tested and that no testing of their
content or quality would be done. The reason for this deci-
sion was there were many differing opinions on what high
quality meant. Since the ICC profile has a very broad us-
age, from inexpensive desktop printers to offset presses,
the quality expectations were very different. Therefore,
quality was left up to the profile creator. 

The validator returns one of three results, pass, fail, or
warning. The user has control over how much information
is given for a profile that passes. The user may view all of
the profile attributes as they are tested or they may view
only the final result. A “pass” result indicates that no prob-
lems were found in the profile. A “warning” indicates that
the profile’s color data and functionality are unimpaired,
however, some data fields were found to have errors. An
example of a warning is a creation date before 1992. A
“fail” result is due to any other error that would impact the
normal use of the profile. A description of each warning or
failure is always given. 

There are five categories of tests performed by the val-
idator: global structure tests, header data tests, required tag
tests, “per-tag” tests, and data type tests. The global struc-
ture tests check file-related attributes and overall data
structure. For example, the actual file size must match the
file size stated in the header field, the file must be at least a
minimum size, and the tag table must not be corrupted.
Since global structure errors often indicate a corrupted data

Copyright 1996, IS&T



140—The Fourth Color Imaging Conference: Color Science, Systems and Applications

structure, a failure of a global structure test ends the valida-
tion since the remaining tests rely on structure information
to find data. The header data tests are fairly straight-for-
ward. The tests validate the data in the header fields, for ex-
ample, the “magic number”, (‘ascp’) must appear in bytes
36-39. Some of these tests, such as the device manufacturer
and device model signature fields, are not currently tested.
In the future, the ICC will provide a computer readable list
of registered manufacturers and model names that will be
used to check these fields.

The required tag tests are based on the profile and de-
vice class. This test checks for the existence of certain tags
in the tag table. All profile classes are required to contain a
copyright tag (‘cprt’) and a profile description tag (‘desc’).
Each profile class and device class have specific public tags
which must be present. If any required tags are not present,
the profile fails the validation.

The per-tag tests make up the bulk of the validator
tests. These tests review each public tag, reading the tag
type and performing tag specific tests on the data. Some tag
tests are very simple and others are more involved. All pub-
lic tags are tested for a valid tag signature, the tag type and
the tag signature must match, and the reserved bytes must
be empty. Typical tests are for tag size, verifying valid
ASCII strings, and verifying that numerical values fall into
the appropriate range. 

Finally, there are data type tests. These are used by the
per-tag tests. These tests check for valid data ranges in of-
ten used data types. The three data types tested are dateTi-
meNumber, XYZNumber, and ASCII strings. These tests
check for valid number types, valid numerical ranges of
values, and valid ASCII characters.

Software Design
The validator was written in the Java programming

language in order to allow for one set of source code to pro-
duce executable software on many computing platforms.
One of the features of Java is the strict object oriented par-
adigm used for the language. Everything in Java is derived
from a class. There are four main Java classes used in the
validator: Valid, ValidUIFrame, Profile, and Tag. There
are also several miscellaneous classes for dialog boxes, and
other user interface elements. The Valid class is the main
thread, it launches the user interface and handles cleaning
up when the validator is done. ValidUIFrame creates the
user interface frame and handles events within it. The Pro-
file class represents one profile, it's methods test the global
structure, tag table, and required tags. Each Tag class rep-
resents one tag. The methods within the Tag class perform
individual per-tag tests. Tag objects are instanciated by
Profiles. Profile objects are instanciated by the user inter-
face when a profile is opened for testing.

User Interface
The user interface was designed to be simple and to

give a quick method of checking a profile. The user is pre-
sented with a control panel containing a field for selecting
a profile. Once selected, the user clicks the “Go” button and

the profile is tested. A panel lights up with the result, a
green panel for pass, an orange panel for warning, and a red
panel for fail. There is also a text area that displays specific
warnings or error messages that allows the user to diagnose
problems. The user can select an option that causes the val-
idator to display detailed information about the profile in
the text area as well as warnings and errors. The text report
may be saved to a file if desired.

Limitations

The profile validator is designed to test an ICC profile as
thoroughly as possible. However, there are some limita-
tions with the present implementation which are due to ei-
ther practical restraints or work yet to be done by the ICC.
The first limitation is that the validator only checks the syn-
tax of profiles. There are no tests of content or quality.
There are currently no tests for CMMs. Signatures regis-
tered by the ICC, such as device manufacturer and device
model, are not tested. Private tags are not tested. The Pro-
fileSequenceDescType is not tested because of the com-
plex nested structure. The purpose of this validator is only
to aid the builder of a profile. The validator will help point
out and debug problems, however, it is the final responsi-
bility of the profile builder to check the profile before use
or distribution.

Future Directions

The Profile Validator will be presented to ICC for review
and acceptance as an ICC approved validation tool. This
approval must be based on extensive testing by the ICC.
Testing entails a rigorous process whereby a test profile
containing a specific error is generated for each error tested
for by the validator. These profiles must give the appropri-
ate error for each test case. Future versions will include the
ability to test a whole directory of profiles, testing of regis-
tered signatures such as device manufacturer, and testing of
the ProfileSequenceDescType. Also, each time a new ver-
sion of the ICC Profile Format Specification is released, a
new version of the validator will be released.

Acknowledgments

The author would like to acknowledge the invaluable assis-
tance of Michael Vigneau of Polaroid Corporation for his
help in designing the functionality. Also appreciated is the
work done by the other members of the ICC conformance
testing working group: Dirk DeBaer, Agfa-Gevaert, N.V.
and Todd Newman, Silicon Graphics. And of course, the
ICC, whose members contributed to this project.

References

1. ICC Profile Format Specification, Version 3.2, Interna-
tional Color Consortium, November 20, 1995.

2. J. Gosling, B. Joy, and G. Steele, The Java Application
Programming Interface, Vol. 1, Core Packages, Addison
Wesley, 1996.

Copyright 1996, IS&T


