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Abstract

 

This paper presents an automatic color segmentation algo-
rithm for paper-based topographic maps. The algorithm
uses an eigenvector line-fitting technique to overcome
false colors introduced by the scanning process due to RGB
misalignment. which is caused by the optical characteris-
tics of the scanner lens and is mostly evident in regions of
color change. The resulting false colors render traditional
color clustering schemes ineffective. This approach based
on an eigenvector line-fitting technique uses the color in-
formation of pixels in a 3 by 3 window to determine the
true color of the pixel. This algorithm has been experimen-
tally verified to be robust and accurate.

 

Introduction

 

The problem being considered here is the automatic seg-
mentation of paper-based United States Geological Survey
(U.S.G.S.) topographic maps. All U.S.G.S. topographic
maps are printed on a white paper stock using standard ink
colors as defined in Table 1. A sample image, shown in
Figure 1, was digitized by a flatbed scanner at a resolution
of 100 dots per inch. To the naked eye, this image is crisp
and contains five distinct colors: white, brown, black, blue
and purple. One would expect clustering in RGB space to
produce five perfect clusters. Analysis of this image, how-
ever, reveals thousands of distinct colors which are neither
visible to the naked eye nor exist in the original map. These
extra colors are termed false colors and are induced by the
scanning process due to RGB misalignment as discussed in
the next section.    To demonstrate the RGB misalignment
phenomenon, the pixels in a small region containing a por-
tion of the two vertical black lines representing a roadway
are plotted in RGB space in Figure 2. In the absence of
RGB misalignment, one would expect to see two clusters
centered about the colors white and black representing the
white background and the black road with a tube-like struc-
ture connecting the clusters containing aliased shades of
gray pixels. This plot, however, reveals two tube-like struc-
tures connecting the clusters. The one on the left passes
through green shades and the one of the right passes
through    purple   shades showing that RGB misalignment

tends to split the aliased pixels into two smaller tube-like
structures that flare thus introducing false colors.

 

Figure 1. Monochrome version of the color test image.

 

RGB Misalignment

 

RGB misalignment occurs whenever the red, green, and
blue color planes are not perfectly registered. Flatbed scan-
ners digitize color images in three passes using red, green,
and blue light filters. The first cause is due to a physical
misalignment. If the sensor head is moved or the physical
geometry between the lens, the picture and the image plane
changes between color scans, the color planes will not be

 

Table 1. Standard Inks

 

Color Category

Brown Contour lines

Black Cultural features

Purple Updated cultural features

Blue Rivers

Green Vegetation

Purple

Purple

Blue

Blue

Brown

Blue

Black



 

130—

 

The Fourth Color Imaging Conference: Color Science, Systems and Applications

 

registered. This type of misregistration can be avoided by
better scanner design and manufacturing. The second cause
is due to optical misalignment and has to do with a prism
effect of the lens material. As shown in Figure 3, filtered
red, green, and blue light rays traveling through optical
path A from the paper to be scanned and the lens are bent
slightly differently by the lens thus hitting the image plane
at slightly different locations (e.g., A

 

b

 

, A

 

g

 

, and A

 

r

 

) with a
dispersion on the order of several pixels. This effect is
known as “lateral chromatic aberration” and is a direct re-
sult of the dependence of the refraction index of the lens
material on the wavelength or color of the light passing
through the lens. Optical misalignment is an inherent prop-
erty of flatbed scanner design and is very expensive and
difficult to minimize optically.

 

Figure 2. Illustration of RGB misalignment induced false colors
in RGB space for pixels around a vertical black line

Figure 3. Geometry of a color flatbed scanner

 

RGB misalignment renders traditional color clustering
algorithms ineffective. To illustrate this point, a color
clustering   algorithm

 

1

 

 was applied to the image shown in
Figure 1 which resulted in 130 clusters. Most of the clusters

were false or incorrect containing pixels from different
classes. Figure 4 plots a cluster that contains brown and
black pixels.  Other researchers have reported the effects of
false colors caused by RGB misalignments. Hedley and
Yan

 

2

 

 noticed that “the colors in the map [image] are not
distinct as would be expected.” They developed a gradient
thresholding scheme to overcome this misalignment that
combines spatial and color space information to classify
each pixel. Marcu and Abe
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 also detected RGB misalign-
ment and plotted this phenomenon in RGB space. Their re-
sults are very similar to the RGB color space plot in Figure
2. They corrected the problem by realigning the RGB chan-
nels using intense image processing computations.

 

Figure 4. RGB cluster containing brown and black aliased pixels.

 

Color Segmentation

 

The main emphasis of this algorithm is to correctly seg-
ment U.S.G.S. paper-based maps automatically and to be
robust against any false colors introduced by the digitiza-
tion process. This algorithm involves two steps. First, the
image is segmented via a eigenvector line-fitting technique
and the resulting clusters are smoothed using a majority
rule. The final step involves clustering the resulting
smoothed eigenvector image with the white background
subtracted out to yield the final clusters. 

The algorithm starts by centering a 3 by 3 window
about each pixel in the RGB source image. This window
provides a set of 9 points in RGB space. Let the set of
points be denoted as:
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 are the red, green and blue components
of V

 

i

 

. Let d
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 be the perpendicular distance from the 

 

i

 

th pixel
to the best-fit line through the 9 points in RGB space. This
is the line that minimizes the sum of the square error as
shown in the following equation:
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It can be shown that the line minimizing the above
equation is parallel to the eigenvector (

 

φ
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, 

 

φ

 

g

 

, 

 

φ

 

b

 

) having the
largest eigenvalue (

 

λ

 

) of the following scatter matrix (S)
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:
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Thus, the direction of the eigenvector corresponding to
the largest eigenvalue (i.e. principle eigenvector) is parallel
to the line that minimizes the perpendicular distance be-
tween the 9 pixels and the best-fit line in RGB space. An
example is shown in Figure 5.  The principle eigenvector
(

 

φ

 

r

 

, 

 

φ

 

g

 

, 

 

φ

 

b

 

) and eigenvalue (

 

λ

 

) have special meaning.  First,
high eigenvalues occur in regions of high color change and
aliasing.  Secondly, the direction of eigenvector represents
the perceived color of the pixel.  

The resulting principle eigenvectors are used to create
an eigenvector image as shown in Figure 6.  Each pixel in
the RGB source image is replaced by its corresponding
eigenvector that represents the best-fit line in RGB space of
the pixel and its eight connected neighbors.  These values
are then mapped to [0, 255].  Next, a color clustering
algorithm

 

1

 

 is used to segment the eigenvector image result-
ing in slightly over 50 clusters for the considered example.
These eigenvector results are shown in Figures 7 through
10 for the brown, black, blue, and purple clusters respec-
tively.  Note that the lines represented in the eigenvector
segmentation results are much thicker than their corre-
sponding lines in the RGB source image.  

 

Figure 5. Eigenvector line fitting in RGB space for a typical 3 

 

×

 

 3
window.

Figure 6.  Eigenvector image created by replacing each pixel in
the RGB source image (Figure 1) 

Figure 7. Eigenvector segmentation result for brown contour
lines.

 

Next, a smoothing operation is applied to the eigen-
vector clusters in the spatial domain. A 3 by 3 window is
centered about each pixel, and the cluster assignments of
these 9 pixels are noted.  If six or more pixels have the same
pixel assignment, then the center pixel is assigned to the re-
spective cluster. Otherwise, the pixel is assigned to the
background cluster.  Finally, the white background pixels
are identified using RGB clustering of the original image
and selecting the largest cluster as shown in Figure 11.  All
the background pixels are then subtracted from the
smoothed eigenvector image. Upon the execution of this
stage, the number of clusters is reduced to 11 of which five
are significant.  These final segmentation results are shown
in Figures 12 through 15.
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Figure 8. Eigenvector segmentation result for black pixels
representing roads.

Figure 9. Eigenvector segmentation result for blue pixels
representing rivers.

Figure 10. Eigenvector segmentation result of purple pixels
representing map updates.

Figure 11. RGB segmentation for the white background
identified by RGB clustering.

Figure 12.  Final segmentation results for brown contour lines.

Figure 13. Final segmentation results for black pixels
representing roadways.
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Figure 14.  Final segmentation results for blue pixels
representing rivers.

Figure 15.  Final segmentation results for purple pixels
representing updates to the map.

 

Results

 

Inspection of Figures 12 through 15 shows the sample im-
age shown in Figure 1 was automatically segemented into
five colors, white background, brown contour lines, black
roadways and cultural features, blue rivers and waterways,
and purple map updates.  This algorithm has been tested on
other samples taken from U.S.G.S. paper-based maps with
equal success.  It has been tested with samples scanned at
different resolutions ranging from 100 to 600 dots per inch.

 

Conclusions

 

This algorithm based on eigenvector line-fitting technique
in the RGB color domain utilizes both spatial and color in-
formation to automatically and accurately segment paper
based maps.  In all of the experiments, the eigenvector line
fitting based color segmentation algorithm performed con-
sistently.  It proved to be completely invariant to any RGB
misalignments.  
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