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 Abstract

 

Spectral based color image editing systems include meth-
ods for 

 

generating

 

 spectral representations of surfaces and
illuminants from input signals of image capture devices
(such as digital cameras and scanners), 

 

editing

 

 spectral rep-
resentations of surfaces and illuminants in a scene, and

 

transforming

 

 spectral representations of surfaces and illu-
minants to output signals of image devices (such as CRT
and LCD displays and color printers).

 

Introduction

 

Computer-assisted color image editing systems include
methods for image capture, manipulation and reproduction.
Until recently, color image editing systems were commer-
cially available only as part of large graphics systems. To-
day, such systems are widely available in desktop
publishing software or embedded in drivers for digital cam-
eras, scanners and printers, providing users with the means
to 1) generate digital representations of color images, 2)
edit digital representations to make the image look visually
appealing, and 3) reproduce digital representations on dif-
ferent media. Whether they are part of an elaborate publish-
ing system or a software driver for imaging peripherals, all
color image editing systems are dependent on and limited
by devices that either capture or generate color images. 

Most image capture devices have only three color sen-
sors and therefore compress a multidimensional spectral
signal into the output of three color channels — usually, R,
G and B. Most color image editing systems convert the de-
vice RGB signals into a human-based representation, such
as CIE XYZ, and operate on this representation. For exam-
ple, Neugebauer

 

1

 

 and Schreiber

 

2

 

 described color image ed-
iting systems based on converting device-dependent image
representations, such as scanner or display RGB values,
into human-based tristimulus signals, such as XYZ. These
color image editing systems provide a means of changing
and displaying the human-based tristimulus signals to en-
able interactive editorial color corrections. The objective of
these systems is to visualize or simulate enhancements to
the printed output before the actual image is printed.

This paper presents a different approach to color image
editing.   Rather than convert device-dependent signals or
vectors into human-based vectors based on the CIE XYZ
color matching functions, as is traditionally performed in
today’s color image editing systems, it is possible to use de-
vice-dependent sensor responses to estimate device-inde-
pendent spectral reflectances of surfaces and illuminants in

the captured and/or rendered scene. To illustrate this ap-
proach, I describe several methods for generating spectral
representations of surfaces and illuminants in a scene.   I in-
troduce the concept of spectral-based color image editing
(SBCIE) systems that embody methods to generate, edit
and reproduce spectral representations of surfaces and illu-
minants based on the analysis of digital images generated
by scanners, digital cameras and displays.

 

Background

 

In this section, I introduce the linear algebraic notation for
spectral representations of illuminants and surfaces used
throughout this paper. Then I describe the more practical
low-dimensional linear spectral representations that can be
used to approximate spectral representations. These low-
dimensional linear models are necessary because most of-
ten we do not have complete spectral information about the
illuminants and surfaces in a scene. I describe how the ac-
curacy of spectral representations are limited by the dimen-
sionality of our image capture data and by our 

 

a priori

 

knowledge of scene illumination. 
 The spectral power distribution of illuminants and the

spectral reflectances of surfaces are represented as func-
tions of wavelengths.  For example, the spectral power dis-
tribution (SPD)  of an illuminant  can be described by a
single vector, 

 

e

 

, with 

 

n

 

 entries representing the amount of
energy emitted over a range of wavelengths (e.g. 

 

n

 

 = 81
when the wavelengths range from 380 nm to 780 nm in 5
nm steps).

The spectral radiance factor of a surface

 

4

 

  is the wave-
length composition of the light reflected and/or emitted
from the surface.  The spectral radiance factor of a surface
can be represented by a

 

 n 

 

× 

 

n

 

 matrix, 

 

S

 

.  If the surface is
diffuse and does not fluoresce, 

 

S

 

 has values between 0 and
1 along the diagonal and no values in off-diagonal posi-
tions in the matrix.  (A glossy or specular surface may have
values that exceed 1.0.) When surfaces do not fluoresce,
their spectral radiance factor can be represented by a vec-
tor, 

 

s

 

, corresponding to the diagonal component of 

 

S

 

.  A
fluorescent surface, however, will absorb light in one
wavelength and emit light in a longer wavelength. Thus the
spectral radiance factor of  fluorescent surfaces cannot be
described by a single vector because it will have entries in
the off-diagonal positions in the matrix 

 

S

 

.  The complete
characterization of the spectral radiance factor of a surface
that has both diffuse and fluorescent component requires
the full 

 

n 

 

×

 

 n

 

 matrix 

 

S

 

.
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Low-dimensional linear spectral representations of illumi-
nants and surfaces

 

The spectral representations of many illuminants, 

 

e

 

,
can be approximated by  a linear combination of a smaller
set of spectral basis functions, 

 

B

 

i

 

:
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where

 

  w

 

i

 

 

 

are the weights chosen to minimize the error be-
tween the illuminant SPD and its linear model approxima-
tion, and 

 

N

 

 is the dimensionality of the spectral
representation.

The  spectral representations of diffuse surfaces, 

 

s

 

,  can
also be described by a linear combination of a smaller set
of spectral basis functions.

 

6-9

 

These low-dimensional linear models of illuminant
spectra and surface reflectances are obviously more effi-
cient and serve to reduce the amount of data that must be
stored to reconstruct the spectral representations. More-
over, we often generate the spectral representations of illu-
minants and surfaces from low-dimensional spectral data,
such as camera and scanner RGB values. In this case, the
dimensionality of the image capture data will limit the di-
mensionality of our spectral reflectances for reconstruction
purposes.

The accuracy of our spectral representations of surfac-
es and illuminants will be limited by 1) the inherent dimen-
sionality of the illuminant spectra and surface reflectances,
2) the dimensionality of the image capture data, and 3) our
apriori knowledge about surfaces and illuminant spectra. If
we have enough spectral channels in our image capture de-
vice and knowledge of the illuminant,  we can build an ac-
curate representation of surfaces and illuminants. In
practice, most applications do not have enough sensor data
and apriori knowledge to build complete representations of
surfaces and illuminants. In these cases, we are forced to
make low-dimensional estimates of the surface reflectance
matrices and illuminant vectors

 

3,10-12

 

 which approximate
the complete representations.

 

Spectral-Based Color Image Editing Systems

 

Spectral-based color image editing (SBCIE) systems are
based on methods for generating, editing and reproducing
spectral representations of surfaces and illuminants.  To il-
lustrate these methods, I give several examples of how to
generate spectral representations of surfaces and illumi-
nants based on the analysis of digital representations of
scenes generated by scanners, digital cameras and displays.

 

Scanners

 

It is possible to use scanner RGB values to estimate the
first three principal components or basis functions of sur-

face spectral reflectances. Rather than map the scanner
RGB values into tristimulus values (as traditional colori-
metric approaches have done),

 

13,14

 

 the scanner RGB values
are used to estimate the weight factors of three reflectance
basis functions. The estimated weights and the correspond-
ing spectral basis functions are then used to build three-di-
mensional linear representations of surface spectral
reflectances.  

To illustrate how to generate spectral representations
of scanned surfaces from scanner data, I introduce the fol-
lowing notation.  Let 

 

R

 

 be a 

 

3 

 

× 

 

M

 

 matrix of scanner re-
sponses to 

 

M

 

 spectral surfaces, 

 

T

 

 be a 

 

3

 

×

 

n

 

 matrix
describing the spectral responsivities of a three-channel
scanner where 

 

n

 

 defines the range of wavelength samples,

 

B

 

 be a

 

 n 

 

× 

 

3 

 

matrix defining three spectral basis functions
for surface reflectances and 

 

W 

 

be a 

 

3 

 

× 

 

M

 

 matrix of basis
weights.

Then,

 

R = TBW

 

Note that 

 

T

 

 and 

 

B 

 

can be combined to form a 

 

3x3

 

 ma-
trix, 

 

C

 

, and 

 

W

 

 can then be solved by the regression equa-
tion:

 

W = C

 

-1

 

 R

 

Having solved for 

 

W

 

, our estimates of the spectral re-
flectances of the scanned surfaces are calculated by:

 

S = BW

 

This example is based on 3-channel output - the more
the channels , the better one will do. For example, we get
significant improvement with increasing to 4 spectral chan-
nels.

 

15,16 

 

 We can also, improve our estimates of the surface
reflectances by judicious selection of spectral basis func-
tions.  For a review of methods for selecting the appropriate
basis functions, see Sherman and Farrell.
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 For a descrip-
tion of a method for increasing the number of channels in a
scanner see Farrell, Sherman and Wandell.
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Digital Cameras

 

If we know both the spectral sensitivities of the color
sensors in a digital camera  and the spectral power distribu-
tion (SPD) of the illuminant,  we can use the method de-
scribed above to estimate the spectral reflectances of the
surfaces in the scene captured by the digital camera:

 Let 

 

R

 

 be a 

 

3 

 

× 

 

M

 

 matrix of camera responses to 

 

M

 

 spec-
tral surfaces,

 

 T

 

 be a 

 

3  

 

× 

 

n

 

 matrix describing the spectral re-
sponsivities of a three-channel camera (illuminant
included),  and 

 

B

 

 be a 

 

n 

 

×

 

 3

 

 matrix defining three spectral
basis functions for surface reflectances.  We then solve for
the weights on the spectral basis functions, 

 

W

 

, and estimate
the spectral reflectances, 

 

S

 

, by 

 

BW

 

.
There are many instances in which  the illuminant SPD

is not known, however.  In fact, it is most often the case that
we do not know what part of the color signal recorded by a
digital camera reflects the scene illuminants and what part
reflects the surface reflectances.  If we knew the illuminant,
we could solve for the surfaces.

 

10

 

  If we knew the surfaces,
we could solve for the illuminant.

 

3

 

  When we cannot mea-

e wiBi

i 1=

N

∑≈

s wiBi

i 1=

N

∑≈

Copyright 1996, IS&T



 

106—

 

The Fourth Color Imaging Conference: Color Science, Systems and Applications

 

sure the illuminant SPD, we are forced to estimate it from
the distribution of color pixel values in the captured image. 

Illuminant estimation is an important problem that is
beyond the scope of this paper. I refer the reader to the
“subspace algorithm” by Maloney and Wandell

 

11

 

 and the
“gray world algorithm” by Buchsbaum.
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 Other algorithms
which are based on formal statistical theories include the
“maximum likelihood estimation algorithm” and the "co-
variance matching algorithm" by Trussell and Vrhel,

 

22

 

 and
the “Bayesian color-constancy algorithm” by Brainard and
Freeman.

 

24

 

 All these methods rely in one way or another on
restricting the dimensionality of linear vector space for rep-
resenting the illuminant spd. The performance of these al-
gorithms for estimating the illuminant SPD depends
greatly on the number of classes of color sensors. The ac-
curacy of the illuminant SPD estimations increases with the
number of color sensor classes. 

 

Displays

 

Color images of scenes are often rendered on emissive
(e.g. CRT) or reflective (e.g. LCD) displays.  Even though
we may not know how the images were generated, we none-
theless have the perception that the displayed images are re-
alistic depictions of actual scenes. In fact, one of the key
areas in computer graphics is devoted to developing realis-
tic spectral representations of surfaces and iluminants to be
rendered on the display. If we begin with a known spectral
representation, the rendering is straightforward and our
work is done. The real problem is in generating the spectral
representations of surfaces and illuminants, either from sen-
sor data (as illustrated above) or from rendered images.

Let’s assume that we know nothing about how a dis-
played image was generated but nonetheless wish to gener-
ate a spectral representation of the surfaces and illuminants
that is consistent with our perception of the scene.  One
method for doing this is to have the operator select a region
of the scene that corresponds to a white surface.  Since a
white surface has known spectral reflectance,  we can esti-
mate an illuminant spectral power distribution that would
be consistent with the displayed tristimulus values for the
white surface. Let 

 

Y

 

 be a 

 

3 

 

× 

 

1

 

 vector containing the dis-
played tristimulus values for the rendered white surface.
Let 

 

R

 

 be a 

 

3

 

 × 

 

N

 

 matrix containing the linear RGB values
for the white surface.  And let 

 

T

 

 be a 

 

3 

 

× 

 

3

 

 matrix that maps

 

R

 

 into 

 

Y.

Y = TR

T

 

 is determined by the multiplication of two matrices:
a 

 

3xn

 

 matrix containing the CIE XYZ color matching func-
tions, 

 

H

 

, and a 

 

n 

 

× 

 

3

 

 matrix containing the spectral power
distribution of the three display phosphors, 

 

P

 

. 

 

T = HP

 

Our first task is to find an illuminant that when reflect-
ed from a white (Lambertian) surface would generate 

 

X

 

.  In
other words, we wish to solve for the illuminant spd, 

 

E

 

,
where the surface reflectance (

 

S

 

), human color matching
functions (

 

H

 

), and tristimulus values (

 

Y

 

) are known:

 

Y = HSE

 

The method of solving for 

 

E

 

, given 

 

S

 

, 

 

H

 

 and 

 

Y

 

 was
first introduced by Buchsbaum.

 

10

 

  In his algorithm, howev-
er, he used what is commonly referred to as the “grayworld
assumption.” This assumption states that the sensor re-
sponse to a gray surface can be approximated by the sensor
responses averaged over an entire image or scene. In this
example, the average sensor response corresponds to the
tristimulus values, 

 

X

 

, averaged across the entire image. It
is not difficult to demonstrate that this assumption does not
hold for many images. And when this assumption is not
valid, this method for color correction will fail. When the
assumption is valid, however, the method works quite well.
Thus, by asking observers to identify a known surface (be
it white, gray, or purple) we can circumvent the grayworld
assumption and  use the tristimulus values for this known
surface, 

 

Y

 

,  to solve for

 

 E.
When E is generated by daylight illumination, we can

solve for E given Y, H, S and D where Y is a 3 × 1 vector
containing the tristimulus values for a known surface, S,
and D is a n × 3 matrix containing three spectral basis func-
tions for daylight.5 Equation 8 can be rewritten as 

Y = HSDF

where F is a 3 × 1 vector containing the eigenvalues or
weights for D. Since E is estimated by DF, and D is known,
our computational task is to estimate F. To simplify the cal-
culation, combine H, S and D into a 3 × 3 matrix, G.  Then,
we estimate F by

F = G-1 Y

Scene illuminants are often generated by some combi-
nation of fluorescent, tungsten and daylight illuminations,
however, and we need more than three spectral basis func-
tions to describe these more complex illuminations. One
way to solve for E in this case  is to provide users with a
database of illuminant SPDs and to iteratively search
through the database to find E that minimizes the differ-
ence between the predicted tristimulus values, Y’, and the
actual displayed tristimulus values, Y.  

Now, having estimated E, our task is to estimate the
spectral reflectances of surfaces, S, that are consistent with
E and X, where X is a 3 × M matrix containing the tristim-
ulus values for all surfaces depicted in the scene. We select
three spectral basis functions, B,  with which to represent
S, and use the three tristimulus values for each surface to
estimate the weights, W for  B. Again, we can simplify the
calculation by combining  H, E and B into a 3 × 3 matrix,
A.  Then, we estimate W by:

W = A-1 X

Again, as in the previous examples, the spectral reflec-
tances of the M surfaces are estimated by:

S = BW

Transforming and Rendering Spectral 
Representations

Once we have generated the spectral representations, we
can transform (edit) and render (print or display) them.  The

Copyright 1996, IS&T



The Fourth Color Imaging Conference: Color Science, Systems and Applications—107

subsequent transformation and rendering of spectral repre-
sentations of surfaces and illuminants in a scene completes
the color reproduction system.

All transformations in SBCIE are essentially either
changes in the entries of surface matrices, S,  and/or  illu-
minant vectors, e.  This can be achieved most simply by
providing a database of surface matrices and illuminant
vectors from which the user can select. Alternatively, based
on low-dimensional linear models,  we can change the
weights and basis vectors that are used to generate the sur-
face matrices and illuminant vectors (see the discussion of
Low-dimensional linear models above)

Surface transformations are the easiest to comprehend
and visualize.  We often want to change the skin tone of a
person, the color of a dress, the saturation of grass, the col-
or of drapes or paint, and so on. Illuminant transformations
are difficult to visualize but are nonetheless powerful tools
in SBCIE systems. For example, the perceived color bal-
ance in an image can be altered by rendering the surfaces
under different illuminants.23  Display operators can per-
form such illuminant transformations until the image ap-
pears to look visually appealing.

Other applications include image compositing and
splining.  Here the goal is to render different surfaces under
the same illuminant. This is a challenge for any color image
editing system that attempts to merge images based on sur-
faces from the same physical object but captured or ren-
dered under different illuminants. 

Once we have spectral reflectances of surfaces and il-
luminants, it is a straight forward process to render these
representations on calibrated display devices.19,20  To ren-
der spectral representations on printers, one typically uses
a device calibration look-up table (LUT).21

Conclusions

In this paper, I introduce the concept of spectral-based col-
or image editing (SBCIE) systems as a general framework
for image correction, composition, and enhancement.
These systems are feasible because 1) surface reflectances
are low-dimensional, 2) illuminants are often known or
measured,  and 3) image capture devices are linear.  SBCIE
systems enable operators to correct images that were cap-
tured under bad illumination, combine images captured un-
der different illumination, select illuminants that make the
surfaces in an image look more visually appealing, and cre-
ate realistic effects simulating how a scene will look like
under a desired lighting.  Because the image manipulations
and adjustments correspond to changes that we are all fa-
miliar with, such as changes in lighting and surface proper-
ties, the image manipulations are intuitive to the user.
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