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Abstract

 

We propose a method for the reconstruction of the spectral
reflectance function of every pixel of a fine art painting,
from a series of acquisitions made through commercially
available chromatic filters. We rigorously determine the
minimal number of necessary filters, as well as their choice
in an available set. We give the exact reconstruction formu-
lae of the spectral reflectance functions, as well as the most
adequate way to display the painting on a monitor of
known colorimetric parameters. 

 

Introduction

 

The scientific analysis of masterpieces in fine arts, in par-
ticular of paintings, is based on a very sophisticated techni-
cal tool-box, which has been developed over the last century,
and which takes advantage of the most advanced technolo-
gies: X-rays, magnetic resonance, and beam accelerators for
instance. Developed parallelly, digital imaging allows to
keep faithful images of these paintings, providing the high-
est resolution as demanded by the expert, the perfect geom-
etry of the original document and the fidelity of colors. 

The color of the painting is the manifestation of the
different pigment and varnish layers to the human percep-
tion, under given lighting conditions. It a very important
aspect of the painting, but nevertheless limited. For many
restoration or art-history oriented applications, it is of ma-
jor importance to proceed into a more complete analysis of
the painting, and to obtain some insight into the spectro-
photometrical properties of the pigments. 

This study is usually carried out using spectrophotom-
eters which accurately analyze the light absorption of a
small area of the painting. When a high spatial resolution is
required, micro-spectrophotometers, which allow to focus
the analysis onto a very small part of the painting, are used.
But in both cases, the slowness of the measure prohibits the
processing of the entire painting with a sufficient resolu-
tion. Quite recently, imaging systems named hyper-spec-
tral scanners have been developed, mostly for remote
sensing applications. Based on the use of a diffracting ele-
ment placed in front of a 2D-sensing array, these systems
allow the acquisition, in one shot, of several hundred mea-
surements at different wavelengths for each pixel of a line.
By scanning the painting with this line, it would be possible
to obtain a complete spectrophotometric analysis. Unfortu-
nately these hyperspectral systems are still very expensive

and difficult to operate, limiting their current use to mili-
tary and spacial applications.

We present a method that is less expensive. It is based
on digital imaging techniques in which chromatic filters are
introduced between the camera and the painting. It is well
known that with 3 well-chosen filters, it is possible to ob-
tain a good reconstruction of the color tristimulus values of
the reference human observer as defined in colorimetry.
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Our aim is to reconstruct as precisely as possible the spec-
tral reflectance curve using more than three filters. We
present here an original solution, taking advantage of the
properties of the pigments used in classical painting. For
this reason it can not be easily extended to post-classical
painting where non-conventional materials are used: fluo-
rescent or acrylic paintings, incorporated materials, etc.

 

Painting Digitization

 

Camera Calibration

 

A direct analysis of the painting is made with a digital
camera, avoiding any chemical step. The painting is ob-
served under a normal incidence angle, it is lighted with a
broad band source, under an angle of about 45 degrees, fol-
lowing the CIE recommendations. We denote the spectral
density of the illuminant by 

 

s

 

λ

 

, the spectral transmittance of
the optical systems in front of the detector array by 

 

o

 

λ

 

, and
the spectral sensitivity of the array by 

 

c

 

λ

 

. The camera re-
sponse to a painting area covered by a pigment with reflec-
tance 

 

r

 

λ

 

 is equal to:

where 

 

Γ

 

 denotes eventual non-linearities of the camera, and

 

ω

 

λ

 

 the system unknowns. After calibration, by inverting 

 

Γ

 

,
the spectral response 

 

χ

 

ˆ of an ideally linear camera is
determined.

If the spectral domain of interest is sampled in 

 

N 

 

wave-
length intervals, the response ˆ

 

χ

 

 to a given pixel may be de-
scribed by ˆ

 

χ

 

or, using matrix notation 

 

χ

 

ˆ = 

 

r

 

t

 

ω

 

. Let us consider the vector

 

ω

 

 describing the system unknowns. For that, we measure
the responses ˆ

 

χ

 

P

 

, 

 

P

 

 = 1...

 

P

 

, of 

 

P

 

 pigments, 

 

P

 

 

 

≥

 

 

 

N

 

, with
known reflectances 

 

r

 

p

 

. Let 

 

R

 

 = [
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1

 

r
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P

 

], is an 

 

N

 

-line, 

 

P

 

-
column matrix and we have ˆ
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1...

 

P

 

 = 

 

R

 

t
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, where
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[ ˆ

 

χ

 

1

 

ˆ

 

χ
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... ˆ

 

χ

 

P

 

]

 

t

 

. When 

 

R

 

 is of rank 

 

N

 

, we may derive 

 

ω

 

 from
the following equation:

where 

 

R

 

–

 

 denotes the 

 

N

 

-line, 

 

P

 

-column pseudo-inverse of

 

R

 

t

 

.

 

Determination of an Unknown Pigment Reflectance

 

Returning to Equation 1 with 

 

r

 

λ

 

 now unknown, but
with known 

 

ω

 

λ

 

, and using a set of 

 

K

 

 chromatic filters with
known transmittance 

 

φ

 

λ

 

, k

 

, 

 

k

 

 = 1... 

 

K

 

, we determine the cam-
era response to the pigment 

 

r

 

λ 

 

through the 

 

k

 

th filter by:

Denoting as 

 

Θ

 

 the known 

 

N

 

-line, 

 

K

 

-column matrix
with general term 

 

φ

 

nk

 

ω

 

n

 

, correcting the system non-linear-
ities and returning to matrix notation, we obtain: 

where 

From this equation, the unknown pigment reflectance
may be perfectly determined (up to numerical errors) if ma-
trix 

 

Θ

 

 is of full rank 

 

N

 

 as follows:

 

Monitor Display

 

As a particular application example of this method, we
may use the previous equations to reproduce the painting
on a monitor. From the known characteristics of the prima-
ries of the CRT used we first determine the associated col-
orimetric functions 

 

c

 

λ

 

,i

 

. We also determine radiometrically
the non-linearity functions 

 

γ

 

i

 

 of the 3 monitor channels. For
an assumed illuminant 

 

S

 

λ

 

 (not necessarily the same as for
the acquisition stage) we obtain the 3 

 

γ

 

-corrected tristimu-
lus values 

 

C

 

i

 

, to be fed into the 3 inputs of the CRT:

which becomes, in a matrix form:

where

 

Ψ 

 

is the 

 

N

 

-line, 3-column matrix with elements 

 

c

 

ni

 

S

 

n

 

.

 

Choice of the Analysis Filters

 

Pigment Space, Eigen-Pigments

 

The number of filters 

 

K

 

 needed to cover the entire vis-
ible domain is a free parameter. In the most general case, a
perfect reconstruction requires an infinite number of filters

to be able to reproduce the narrowest signal discontinuities.
We have not found in the literature an exact answer to this
problem, although some concurrent techniques exist.
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Pigments used in traditional painting all exhibit rather
regular and smooth absorption curves, without narrow
peaks nor discontinuities (Figure 1). We based our study on
a significant set of color patches provided by the National
Gallery in London (courtesy of David Saunders), providing
the essential pigments used in the restoration of old paint-
ings. This set contains 

 

P

 

 = 

 

64

 

 pure pigments covering all
the shades of colors of the spectrum. Each pigment has
been analyzed spectrophotometrically with a resolution of
2 nm in the visible domain from 380 to 780 nm (

 

N

 

 = 

 

201

 

).

 

Figure 1. Spectral reflectance of three pure pigments

 

We want to develop an algebraic modelisation and
adopt a linear law for the mixing of pigments, in disagree-
ment with Beer’s law. Beer’s law,

 

7

 

 a multiplicative law on
the spectral transmittance of mixed pigments, leads to ex-
perimental difficulties, which are unfortunately not easy to
solve. We then want to determine the minimal number of
filters ~

 

K

 

 needed to restitute in 

 

N

 

 points the spectral reflec-
tance of the 

 

P

 

 pigments. Let 

 

R

 

 denote the 

 

N

 

-line, 

 

P

 

-column
matrix of the pigment reflectances, as defined earlier. The
dimension of the space spanned by 

 

R

 

 is given by the rank
of matrix 

 

A

 

, obtained by a Singular Value Decomposition
(SVD) of 

 

R

 

.

 

R

 

 = 

 

UAV

 

t

 

(8)

When examining carefully the eigen-values, it may be
seen that the 12 largest represent 98.2% of the global energy
(Figure 2). Therefore we propose to replace Equation 8 by: 

 

R

 

 =
~
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 = 

 

UO

 

~
K

 

AV

 

t

 

(9)

where O

 

K
~

 

represents the projection onto the
~

 

K

 

 = 

 

12

 

 first
Eigen-vectors. These vectors,

~
U

 

 

 

=

 

 UO

 

K
~

 

are denoted

 

Eigen-pigments

 

. They do not correspond to realistic pig-
ments since their reflectance is not guaranteed to be posi-
tive (Figure 3). They span a space PPPP

 

, a sub-space of the
space spanned by all the pigments, i.e. of the approxima-
tions

 

~

 

r

 

 of the real pigments r. From now on we will only
try to preserve the reconstruction of ~r .
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Figure 2. Singular values of the A matrix (in log scale.

Filter Selection
We know the matrix Θ obtained from the spectral

transmittances of several commercially available filters

(Wratten, Hoffman, Schott). We want to select the
~
K best

filters for our reconstruction. For each filter we build the
unitary vector

aligned on the kth filter, its projection on the jth Eigen-vector
is ũt

jyk and its projection in PPPP  is gk =
~UtykWe present two

methods for the filter selection:
1. As a first basis vector b1 = yk1

 we choose the one with a
projection in PPPP  of maximal norm:

The second filter is chosen among the other filters
such that the projection on    PPPP  of its component ortho-
gonal to b1 = yk1 

is maximal:

continuing for the kth vector which is chosen if it maximiz-
es its projection in PPPP  of its component normal to the space
generated by b1, b2,..., bk – 1.

Figure 3. The four largest eigen-vectors of the basis: three contain negative reflectances without any physical meaning.

yk k k= φ φ/

g gk k1
≥

y b y b yk b y b k kk l
t

k l l
t

k l2 2 2– – , ,( ) ≥ ( ) ∀ ≠ (10)
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2. Starting from the set of projections gk, we choose the
one of maximal norm as the first basis vector b1 = yk1

.
The second filter b2 is then the filter yk2 which maxi-
mizes the component orthogonal to gk1

 of its projec-
tion gk1

:

Let b1, b2,..., bq – 1 denote the q – 1 first selected filters,
and FFFF  the space spanned by their q – 1 projections in PPPP . The
filter bq is then chosen as the filter bq = ykq

, whose projec-
tion gkq

 has the largest component orthogonal to FFFF .
The second method appears to be the best in terms of

quality of the results when K̃ is greater than approximately
10. It allows to determine the set of

~
K optimal real filters.

For practical applications, we have found that with 10 to 12
filters chosen according to this method, it is possible to re-
construct any of the rλ curves with a good accuracy. Fig-
ures 4 and 5 show the reconstruction for the yellow
Mercuric Iodide pigment, comparing the two methods.
Among the 64 pigments of our study, the Mercuric Iodide
spectrum was the most difficult to reconstruct, since it
showed a very steep transition near 590 nm.

Figure 4. Reconstruction for the Mercuric Iodide pigment from
11 filters by the first method. Severe differences may be detected.

Conclusion

Using the smooth spectral properties of pigments used in
classical painting, it is possible to analyze with a small
number of filters the spectral response of a painting, at ev-
ery pixel. When applying such methods, difficulties may
nevertheless appear if the signal to be analyzed is very
weak (very dark paintings). The solution of the linear equa-
tion system may become hazardous if the camera does not
provide a signal of very high quality (12 bit per pixel seem
necessary).
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Figure 5. Reconstruction for the Mercuric Iodide pigment from 
11 filters by the second method. The curves are in excellent 
agreement.
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