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Abstract

This paper describes a new correction method for the color
shift due to the illuminant changes based on the estimation
of the spectral reflectance by a neural network. Proposed
method has been compared to two conventional methods
and evaluated. Our evaluation results show that the method
can achieve better accuracy than other methods.

Introduction

[luminant affects an observed and recorded colors of ob-
ject that is colors tend to be reddish or greenish under in-
candescent or fluorescent lighting. These color shifts due to
the illuminant changes in the image would be unacceptable
as the natural colors.

In recent years the color desktop publishing (DTP)
system was in general used for creating a document or ed-
iting digital images for personal and/ or professional uses.
A digital camera also can be used to take an image for such
purposes. However the problem of the color shifts due to
the illuminant changes will occur when an image is record-
ed under some other illuminant since the color DTP system
is typically calibrated for only one illuminant such as day-
light illuminant D50. Thus it is required to perform a cor-
rection of the color shifts prior to printing an image so that
it makes a color matching to the image recorded under day-
light illuminant.

This paper presents a new correction method of the
color shift due to the illuminant changes based on the esti-
mation of the spectral reflectance using a transformation
from CMY value by a three layered neural network. Two
conventional methods for correcting the color shift will be
briefly reviewed. Then a new color correction method will
be compared to these conventional color correction meth-
ods for evaluation.

Color Correction Methods

The color shifts due to the illuminant changes can be repre-
sented as a difference between the tristimulus value under
different illuminants since colors are colorimetrically de-
fined by a tristimulus value using spectral reflectance,
spectral distribution of the illuminant and color matching
function. In other words when the tristimulus values under
observation illuminant L and daylight illuminant L, can be
calculated by = MTLR and ¢ = MTL R, the color shifts

correspond to the difference between ¢ and ¢. Where M is 3
x N Matrix which is comprised by XYZ color matching
function (N is the number of its sampling point). N-element
row vector R and N X N diagonal Matrix L represent the
spectral reflectance and spectral distribution of the illumi-
nant respectively. Figure 1 shows such color shifts due to
the illuminant changes between daylight and observation
illuminant (e.g. incandescent or fluorescent illuminant) and
an aspect of the color correction. Then, if the spectral re-
flectance can be estimated from the tristimulus value under
observation illuminant it is possible to acquire the tristim-
ulus value under daylight illuminant by the calculation in-
dicated by a dotted line in Figure 1. However this
estimation is difficult mathematically because there exist
huge number of spectral reflectance (metameric color)
which can give the same tristimulus value. Therefore to ob-
tain the tristimulus value of the daylight illuminant by this
estimation it is necessary to put possible spectral reflec-
tances somehow under constraint.

White Point Mapping (WPM) is a sort of method
which is used in conventional video system, digital color
imaging system and other recording systems. This method
assumes that the same color shift due to the illuminant
changes occurs in each colors, and use the reference white
for determining the quantity of the correction. That is col-
ors are corrected by the same quantity of the correction as
the reference white.

However this would produce significant correction er-
rors in each colors except for the vicinity of the white point
because illuminant changes give rise to the various color
shifts in each colors. On the contrary Vrhel and Trussell!
have proposed Principal Components (PCS) method based
on the estimation of the spectral reflectances by a finite di-
mensional linear model with a small number of principal
components. Here. we will describe these two methods and
our method for correcting the color shifts due to the illumi-
nant changes.

White-Point Mapping Method

WPM can be described as follows: if C,,  is a three el-
ement vector produced from viewing R under daylight illu-
minant L, then # can be matched to C,, , by multiplying the

;! 3 wpm
correction matrix D

C, =Dt (1

wpm
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Figure 1. Scheme of the color correction for the color shifts due to the illuminant changes

Correction matrix D is given by:

(0)
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D=| 0 Yy 0 )
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where vao) R Yff,n s Zy(v(,n and X | Y, , Z, correspond to the
tristimulus value of the reference white under daylight and
observation illuminant.

Principal Components Method

A finite-dimensional linear model is used in PCS
method to estimate the spectral reflectance of each color. It
defined by:

— 3
R=R+3Y yu, )
i=1

where R is a mean vector and y; is the principal component
associated with i-th principal component vector u; ,
respectively.

Then the tristimulus value can be calculated by using
the above finite-dimensional linear model; Equation (3),
which is:

tpa =MTLuy+MTLR
=M"Luy+m,

where u = [u,, 1y, p53]" is a principal component vector
matrix and m, = M'LR is a matrix of the tristimulus value
for a mean vector. From this equation the principal compo-
nent matrix y= [y, ¥,, y;]7 is calculated by:

v =M LWty -, ®)

Thus by using the finite-dimensional linear model the
tristimulus value C|, under daylight illuminant corrected
by principal components method is:

Cop = M Lu[M L] [ty ~m,] ©6)
+m,

For details of this correction method refer to the article
of Vrhel and Trussell.!
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Figure 2. Structure of the neural network. It makes a
transformation from CMY value to the spectral reflectance.

Proposal of the Color Correction Method using a
Neural Network

A three layered neural network is used for the estima-
tion of the spectral reflectance in proposed method instead
of the finite-dimensional linear model. A structure of a neu-
ral network for estimating the spectral reflectance from
CMY value is shown in Figure 2. A number of input and
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output units correspond to C, M, and Y value and a number
of points of the spectral reflectance (N = 31). 18 units were
used in a hidden layer. We can estimate the spectral reflec-
tance using a neural network as shown in Figure 2. When
the estimated spectral reflectance is represented as a non-
linear function of C M and Y: R(C,M.Y), the tristimulus
value #,,, under the observation illuminant L is calculated
from

Cprop = MTLR(C,M.Y) @

where R (C, M, Y) is updated by the optimization process
shown in Figure 3. In this process CMY value is adjusted
so that the square error between original tristimulus value ¢
and the calculated tristimulus value ¢, is minimized using
nonlinear optimization process.

The tristimulus value C orop COITECted by the proposed
method is defined as:

Cpop=MTL,R,(C,M,Y) ®)

prop

where R,(C, M,Y) corresponds to the determined spectral
reflectance by the optimization process.
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Figure 3. Color correction method using a neural network. The
spectral reflectance is updated by nonlinear optimization process.

Evaluation of an Accuracy for Each Method

We printed 1331 color chips by dye-sublimation printer.
As a training data set of the neural network and data of
principal component analysis, 216 data were chosen from
1331 color chips. We also used the 125 color chips as a test-
ing data set selected from 1115 unknown data. Both data
sets equally include the chips with possible various kinds
of hue chroma and lightness. For the reference white in
WPM method the spectral reflectance of a paper of
dye-sublimation printer was used. To evaluate each color
correction method we calculated the tristimulus values
C,pm €,y and €, of the color chips for two cases: a flu-
orescent F3 illuminant and an incandescent A illuminant.
These are compared to the tristimulus values obtained for
actual spectral reflectances under daylight illuminant D50.
Figure 4 indicates the spectral distribution of each illumi-
nant are regulated by CIE. The distributions are normalized
such that total energy is equal to 1.
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Figure 4.Spectral distribution of the illuminants. D50 A and F3
illuminants were used.

Figures 5 and 6 show an accuracy of each method for
F3 and A illuminant, respectively. The upper side of each
figure indicates that the errors of color correction are plot-
ted on a*-b* plane of CIE L*a* b* uniform color space.
Symbol ¢ is the actual tristimulus value under D50 illumi-
nants. The thin lines correspond to the color differences be-
tween estimated and actual tristimulus values. The lower
side shows the histograms of these color differences for
each method. Vertical lines in this figure represent the
mean color differences.

These results show that WPM can correct the reference
white perfectly but produces significant errors in other col-
ors under F3 illuminant and A illuminant. The mean and
maximum color difference for both illuminants are consid-
erably large: AE = 11.204, AE = 25.324 under F3 il-

Juminant and AE . = 97286, AE. = 20.768 under A

illuminant respec%e\tllgly. In contrastmtaf)l(e principal compo-
nents method performed a correction with relatively small
errors not only for the reference white but also for chromatic
colors. The mean and maximum color difference for both il-
luminants are also relatively small: AE, = 3.8705.AE,

= 17.709 under F3 illuminantand AE, - = 3.8296, AE, =

15.386 under A illuminant respectively. Furthermore the
proposed method could perform better correction than the
principal components method thatis, AE, , = 1.7076, AE-
max = 12.716 under F3 illuminant and AE, , ==1.4607, AE-

mar= 11.679 under A illuminant. This evaluation results of a
proposed method indicate that the color correction errors

would not be visually noticeable.

Discussions

An accuracy of color correction obtained by the proposed
method fairly improved as compared with principal com-
ponents method. We consider that this is because the esti-
mation accuracy of the spectral reflectance by neural
network is better than that by finite-dimensional linear
model. To examine how well a neural network can approx-
imate the spectral reflectance we compared the estimation
accuracy of a neural network with finite-dimensional linear
model with three and four principal components vectors. In
this evaluation 1115 spectral reflectance data (described in
the previous section) were used. The mean squared error
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between original and estimated spectral reflectance were where M is the number of spectral reflectance (M = 1115)
calculated by: Ri(kj) and Ri(Kj) correspond to the original and the esti-
mated spectral reflectance respectively. MSE of each mod-

1 XY - 9) el are specified in Table 1. We can see that a finite
MSE = M 2{ zl{Ri(;tJ') —R; (AJ' )} dimensional linear model can not achieve better approxi-
e mation accuracy than a neural network even if four princi-
pal components are used.
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Figure 5. Accuracy of each correction method for the color shift due to the F3 illuminant.
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Figure 6. Accuracy of each correction method for the color shift due to the A illuminant.
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Table 1. Comparison of the Estimation Accuracy of the
Spectral Reflectance. Finite Linear Model with Three and
Four Principal Components and Neural Network Model
were Compared.

Method 3-terms 4-terms N.N.
MSE 0.00123 0.000691 0.000364
Conclusions

A new method of color correction based on the estimation
of the spectral reflectance by a neural network was de-
scribed and compared to the standard method of the White
Point Mapping and Principal Components method. These
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methods were tested on spectral reflectance of color chip
reproduced by a dye sublimation printer under F3 and A il-
luminant. We found that the proposed method produced
color errors less noticeable than white-point mapping
method and principal components method. That is the
mean and the maximum color difference was AE, = =

1.7076 AE, , = 12.716 under F3 illuminant and AE

mean —

1.4607. AE,, . 11.679 under A illuminant. respectively.
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