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Abstract

We propose a minimax technique to extract the optimum
grid structure that will minimize the error in the interpola-
tion of multidimensional functions using sequential linear
interpolation (SLI). The error criterion we use is the maxi-
mum absolute error. We apply this method to the problem
of color printer characterization.

Introduction

Many important problems in image and signal analysis re-
quire accurate interpolation of nonlinear multidimensional
functions. Recently, an efficient multidimensional function
interpolation technique called SLI' was proposed. The SLI
method uses a structured lookup table with nonuniformly
spaced grid points. The SLI grid structure for the interpola-
tion of a 3-D scalar-valued function f(x), X = (x,, X,, X3) is
given in Figure 1a. First, the x, — x; grid planes are placed
nonuniformly perpendicular to the x, axis. Then, grid lines
are placed nonuniformly in the x, direction on each grid
plane. Lastly, the grid points are placed nonuniformly on
each grid line. The grid planes, the grid lines, and the grid
points are more densely spaced in regions where the func-
tion is more nonlinear. Each function point is trilinearly in-
terpolated from 8 neighboring grid points, 4 from each grid
plane on either side of the point to be interpolated. Three
nested independent linear interpolations are carried out to
find each function point. The interpolation scheme is de-
picted in Figure 1b.

The SLI structure has two significant advantages.
First, it minimizes the need to search for the grid points to
be used for interpolation. Second, it enables the develop-
ment of optimal design procedures. An asymptotic theory
which for a fixed number of grid points finds the grid struc-
ture that minimizes the mean-squared interpolation error
was developed.! A similar structure and asymptotic theory
was earlier developed for vector quantization.>? In some
applications, however, the maximum absolute error is of
more concern than is the mean-squared error (MSE).
Therefore, we took a minimax approach* to the design of
SLI structures for surface interpolation. We proposed an it-
erative minimax grid point allocation method and a method
that makes use of asymptotic theory for 2-D function inter-
polation. The method using the asymptotic design theory

gives closed form expressions for the number of grid lines,
the optimal grid line density, and optimal grid point density
for each grid line in terms of the second order partial deriv-
atives of the 2-D function subject to bounds on the third or-
der derivatives of the function. For functions like color
printer transfer functions that exceed these bounds, we
have found that the iterative grid structure performs better
than the one designed via the asymptotic design theory. In
this paper, we generalize the 2-D iterative minimax grid
point allocation method to 3-D. We apply this method to
the problem of color printer characterization.
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Figure 1. 3-D SLI grid structure (a) and the 3-D interpolation
scheme (b)

Iterative Minimax Grid Point Allocation

Our iterative minimax grid point allocation method is mo-
tivated by Kurozomi and Davis’s method? for finding the
best minimax polygonal approximation to a curve that min-
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imizes the maximum distance between the given curve and
the approximation, and by Imai and Iri’s method® for find-
ing a piecewise linear approximation within a given maxi-
mum error tolerance to a curve. We first describe the
application of this method to 1-D function interpolation
and then generalize it to 2-D and to 3-D.

1-D Function Interpolation

In the linear interpolation of the function f(x), xe [A,
B], between N grid points A = x,,...x,, = B, we wish to
choose the location of these grid points to minimize the
maximum absolute interpolation error. Given any fixed
value E for the maximum absolute error, we can find a
point distribution that achieves that maximum error by the
following recursive procedure for i = 2,3,..., N. Assuming
that x,,...x;have been determined, we move x, , , to the right
of x; until the maximum error in the interval [x, x; ] just
equals E. The procedure terminates for some i = M, when
we pass the right endpoint, i.e. x;, > B. Setting x,, = B will
generally decrease the maximum error in the last interval
below the target value E. If M < N, we decrease E and re-
peat the above procedure. If M > N, we increase E and re-
peat it. We iterate until M =N.

2-D and 3-D Function Interpolation

Consider the problem of bilinearly interpolating the
value of a 2-D function f(x), x = (x;, x,) € [A, B] X [C, D],
at a point x, = (x,,, X,,) using the 4 neighboring grid points
in the SLI grid structure, 2 from each grid line on either side
of the point. Since bilinear interpolation is used, it follows
from the Cauchy-Schwartz inequality that the absolute in-
terpolation error is bounded above by the sum of the errors
for interpolation along x, and for interpolation along x,
Therefore, in our grid design procedure, we bound the tar-
get maximum interpolation error E by the sum of the target
values for errors E| due to interpolation along x, and E, due
to interpolation along x,. We pick a value in [0,1] for the ra-
tio p, of E, to E. For given values of E|, p,, and N, we can
find the optimal grid structure by the following procedure.
First we locate the grid lines along x, in a greedy manner as
far apart from each other as possible such that the maxi-
mum error in each grid line interval just equals E, = p,E.
Then, we place the grid points onto the grid lines along x,
using the 1-D procedure described above and the error
bound E, = (1-p,)E. If the number of grid points M < N, we
decrease E and repeat the above procedure, keeping p,
fixed. If M > N, we increase E and repeat it. We iterate until
M = N. The resulting grid structure is the optimal one for
the given number of grid points N and the given ratio p, of
E, to E. We repeat this procedure for all possible values of
p,; and we find the optimal grid structure that results in
minimum maximum interpolation error for the given num-
ber of grid points N.

The interpolation of a 3-D function f(x), X = (x,, x,, X3)
€ [A, B] X [C, D] X [F, G], is a generalization of the 2-D
interpolation in which we bound the target maximum inter-
polation error E by the sum of the target values for errors
E, due to interpolation along x,, E, due to interpolation
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along x,, and E, due to interpolation along x,. We pick two
values in [0,1] for the ratios p, of E, to E and p, of E, to E.
We sequentially locate the grid planes, the grid lines onto
the grid planes and the grid points onto the grid lines using
the target error values E, = p,E, E, =p,E, and E; = (1 - p,
— py)E. For fixed (p,, p,), we obtain the optimal grid struc-
ture with N grid points by adjusting E. We iterate over all
possible pairs of (p;, p,) until we find the optimal grid
structure for the given number of grid points N. The Pidgin
ALGOL algorithm given in Figure 2 summarizes the pro-
cedure for 3-D function interpolation for a given pair of

Py Po)-

Initialize E
Ey=pE
Ey=p,E
Ey=(-p,—py)E
i=1,x;=A
while x ;< B
i=1, Xy = C
while x,, <D
k=1, Xajjp = F
while X3 <G
Move' X34i(k+1) tO the right of x, ik until maximum
error in
{o0 3 X {3} X D0 X35500,0)] €quals Ey
k=k+1
end /*grid points placed onto the jth grid line on
the ith grid plane*/
Move xy;; , | to the right of x,,; until maximum
error in {x,;} X [xzij, Xoij + 1)] X [C, D] X [F, G]
equals E,
Jj=j+1
end /*grid lines placed onto the ith grid plane*/
Move x,; , ) to the right of x;; until maximum er-
ror in [xy;, x; ;, 1, equals E|
i=i+1
end /*grid planes placed*/
if the number of grid points is not V, adjust E and repeat the
procedure

Figure 2. Pidgin ALGOL algorithm for the 3-D function
interpolation procedure for a given pair of.(p,, p,)

Application to Color Printer Characterization

Modern color management systems require that color
printers be characterized in some device independent color
space such as CIE L*a*b*. To characterize a printer in the
CIE L*a*b* space, we must evaluate the printer transfer
function which maps points in the input CMY colorants
space to the points in the CIE L*a*b space for every point
in the CMY space, i.e. every possible colorant combina-
tion. Since the complex interaction of the colorants of the
printer with the paper substrate makes mathematical mod-
elling of the color printers quite difficult, lookup tables
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(LUT’s) are used to characterize the color printers. The
storage requirement for a LUT including all possible colo-
rant combinations (more than 16 million combinations for
a printer that uses 8 bits per colorant) is excessive for most
applications. Therefore, only a small selection of the points
which form a grid in the input colorants space, are stored in
the LUT’s; and the function values for the remaining points
are interpolated using the table entries.

Many researchers have studied the problems of ex-
tracting the optimal grid structure and efficient interpola-
tion. Kasson et al’, and Hung® sampled the printer input
(CMY) space uniformly and then used tetrahedral interpo-
lation. Bell and Cowan® tessellated the CMY space into tet-
rahedra and then used tetrahedral interpolation. Kanamori
et al'® and Kotera et al'! used a uniform grid structure and
PRISM interpolation. Bell and Cowan'? smoothed the data
with a tensor product spline before obtaining the SLI grid
structure and applying SLI. Chang et al! extracted an SLI
grid structure using asymptotic design theory and an itera-
tive post-processing technique and then used SLI. In this
paper, we use our iterative minimax grid point allocation
method to find the optimal SLI grid structure in the CMY
domain that will result in the minimum maximum absolute
interpolation error and then apply SLI.

Simulation Results

We present simulation results for the interpolation of the
printer transfer function obtained from a model'3 for a Xe-
rox color printer. In the high resolution data set generated
using the printer model, the printer input CMY space is
sampled on a 65 X 65 X 65 uniform grid; and for each grid
point, the simulated printer output vector CIE L*a*b*
space is calculated. We decompose the Xerox data set into
3 3-D scalar-valued functions of L*, a*, and b* in terms of
C,M,and Y.

We present results for the interpolation of 2-D and 3-
D functions derived from the Xerox data set. We obtain a
2-D scalar-valued function of L* in terms of M and Y by
letting C = 60. In Figure 3, we show, for N = 100, the uni-
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form grid structure, Chang et al’s minimum mean squared
error SLI grid structure,! our minimax SLI grid structure,
and the resulting interpolation error surfaces. The nonuni-
form allocation of the grid points in the minimum MSE and
the minimax SLI grids improve the error performance no-
ticeably over the uniform grid. The minimax SLI grid struc-
ture results in a lower maximum AFE and a nearly equi-ripple
error surface even at the boundaries, whereas the minimum
MSE SLI grid structure results in lower RMS AE.

For interpolating the 3-D printer function, we extract 3
separate grid structures for the 3 3-D scalar-valued func-
tions of L*, a*, and b* using the uniform, minimum MSE
and iterative minimax grid point allocation methods. We
also extract a single grid structure that can be used for the
interpolation of all 3 functions by applying our 3-D itera-
tive grid point allocation method jointly to these 3 func-
tions using the maximum AE interpolation error as our
error criterion where AE is given by

AE =~[(AL')? +(Ad")? +(Ab")? - (1)

In Table 1, we compare AE error performances for in-
terpolation of the 3-D printer function known at 65 X 65 X
65 points using uniform, minimum MSE SLI, minimax SLI
and single grid minimax SLI grid structures with 1000 (10
X 10 x 10 for uniform), 3375 (15 x 15 x 15 for uniform) and
15625 (25 x 25 x 25 for uniform) grid points. Both the min-
imum MSE and the minimax SLI grid structures perform
much better than the uniform ones. The minimax SLI grid
structures result in significantly lower maximum AE values
than the minimum MSE SLI grid structures at the expense
of considerably higher relative RMS AE values, displaying
the tradeoff between maximum error and MSE in the de-
sign of grid structures. The single grid minimax SLI grid
structures which decrease the storage requirements and the
time required to locate the 8 points to be used in the inter-
polation by a factor of 3 perform almost as well as the min-
imax grid structures with 3 separate grid structures for L*,
a*, and b*.

Table 1. Comparison of grid point allocation methods

No. of Grid Maximum AE RMS AE
Points Uniform Min MSE Minimax Minimax Uniform Min MSE Minimax Minimax
SLI SLI SLI (1 grid) SLI SLI SLI (1 grid)
1000 12.0337 5.4120 2.8630 2.8972 2.1912 0.5532 1.0059 1.0258
3375 9.9547 3.1338 2.1188 2.1331 1.8226 0.4570 0.6368 0.6686
15625 7.5808 1.9849 1.0781 1.1541 1.3533 0.1762 0.3626 0.4035
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Figure 3. Comparison of uniform (left), minimum MSE SLI (middle) and minimax SLI (right) error surfaces(a) and grid structures(b).
(Note the change in scaling between the error surfaces for the uniform and SLI grid structures.)

Conclusions

In this paper, we developed a minimax method to allocate
a fixed number of interpolation grid points to minimize the
maximum error in the interpolation of multidimensional
functions. We used this technique to extract the SLI grid
structure for interpolating a very nonlinear color printer
transfer function. Our results indicated that the SLI grid
structures perform significantly better than the uniform
grid structures. Our simulations also showed that the mini-
max SLI grid structures result in considerably lower maxi-
mum and considerably higher RMS interpolation errors
than the minimum MSE SLI grid structures.
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