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Abstract 
Several studies in the past have proposed models to 

characterize the colorimetry of displays, most of which have poor 

performance for OLED displays. This is primarily due to the 

dependency of the colorimetry of OLED panels on the Average 

Pixel Level (APL) of the content displayed on them. In this study, 

a workflow is proposed to characterize the colorimetry of APL 

dependent OLED panels based on the power consumption of actual 

pixel-content of the displayed scene. The method performed well 

with a mean of mean CIEDE2000 of 19 natural images as 2.18 

units.  

Introduction 
Predictability is key for characterizing the colorimetry of a 

display. A characterization model aids in understanding how a 

device’s colorimetry behaves. There are two types of 

characterization models: 

 

1. Physical  

2. Empirical  

 

Physical models rely on the established relationships between 

the device's physical properties and its colorimetric output [1], [2]. 

For instance, Cathode Ray Tube (CRT) displays were typically 

characterized using the Gain Offset Gamma (GOG) model [3]. 

Printers can be characterized using the Yule-Nielson, Kubelka-

Munk, or Neugebauer models [2]. These models operate under the 

assumption that the devices are consistent and behave predictably. 

For example, all CRT displays are assumed to follow the GOG 

model due to the physical properties of the electron gun, which has 

a power law relation output luminance with respect to driving 

voltage. The power law relationship is not due to CRT phosphors, 

contrary to popular belief [4]. However, physical models do not 

apply to LCD or OLED displays. Studies have shown that the GOG 

model performs poorly for LCD displays due to variations in RGB 

primaries and differences in backlights and polarizers among 

different manufacturers [5]. The same applies to OLED displays, 

making it impractical to use a single physics-based model for LCD 

or OLED displays, although the latter technology has additional 

challenges to address as well, as discussed later.  

Empirical models, on the other hand, establish relationships 

between device space and colorimetry by measuring a large 

population of colors. These models often utilize multidimensional 

interpolation or neural networks to fit the data. However, they can 

be complex and tend to perform poorly near the gamut boundary 

points [1], [2]. 

 

 

 

 

 

The International Color Consortium (ICC) workflow 

addresses these issues by creating ICC profiles [6] that capture a 

device's colorimetry using Look-Up Tables (LUTs). A display 

device is characterized, and the data is encoded and stored in these 

LUTs. The ICC profiles use an empirical approach combined with 

interpolation. Not all points in the LUT lattice, such as a 33x33x33 

node lattice for RGB space, are measured. Instead, a smaller 

sample is measured, and the remaining lattice points are 

interpolated from this data. Several interpolation methods exist, 

such as tetrahedral or trilinear, with no strict guidelines from the 

ICC on which algorithm to use for creating LUTs [7]. 

Although, the colorimetry for a display can be easily encoded 

into 3-D Look Up Tables (LUTs) using ICC profiles, there are 

drawbacks. ICC profiles only hold true for the calibration status for 

which they are created. The workflow in the ICC paradigm is 

always calibration followed by characterization of the calibrated 

behavior encoded into an ICC profile. So, if the calibration status 

of the display changes, the ICC profile information does not hold 

true. As an example, the ICC profile created for a display (laptop 

or standalone monitors) for a specific peak luminance (200 cd/m2) 

cannot describe the colorimetry of the same display when its peak 

luminance is changed (either via On Screen Display (OSD) 

controls or auto-brightness algorithms). For OLED displays, this 

problem is even more pronounced because of the absence of 

channel independence and chromaticity constancy.   

OLED displays have an even bigger challenge to address. The 

colorimetry of most OLED panels (except reference or master 

monitors) is dependent on content which drives the Average Pixel 

Level (APL) of the display. Though there is not a widely accepted 

definition of APL, a general definition is given by Poynton as “For 

image data having the “gamma correction” of video, the weighted 

average corresponds to BT.601 luma, or average pixel level, APL.” 

[4]. The average luminance of an OLED display is driven by the 

power it consumes [8] thereby affecting its color characteristics. 

For example, for a white window, a smaller window in the presence 

of no background in the frame consumes less power and can use 

the remaining power to produce higher luminance while the same 

content when shown together with a background image has much 

higher power requirements for the overall frame, and thus produces 

lesser luminance resulting in lesser absolute color gamut. This is 

implemented because of Automatic Brightness Limiter (ABL) 

algorithms implemented in OLED panel to limit overall power 

consumption of a panel, and the limiting algorithm is often non-

linear. Several studies in the past have tried to characterize OLED 

displays. Ashraf et al. tested various regression models and found 

out that a 4th degree polynomial model was able to characterize a 

multi-primary OLED display well [9]. The outcome of this study 

was to build an inverse characterization model to map CIEXYZ 
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values to device RGB values. This is important for cases where 

specific CIEXYZ values need to be reproduced on a display device. 

This study however ignores the impact of the APL of an image, 

which has a direct impact of the absolute gamut of an OLED 

display. A study from Sun et al. [10] proposed two models (PLCC 

and polynomial regression) to minimize the color errors arising 

because of the effect of background image. Both models however 

assume chromaticity constancy, that is often not observed in reality 

in OLED displays [8]. Sun et al. [10] proposed a Piecewise Linear 

assuming Chromaticity Constancy (PLCC) based compensation 

model (name PC model) for HDR OLED displays. The models 

works better than 3D-LUT, SMPTE-2084 (refer to [10]) or the 

original PLCC model [10] but this study also did not consider the 

effect of average pixel level on OLED colorimetry and the whole 

study was conducted with a 4% window size. Overall, it was found 

during literature survey that building a color characterization 

model based on the varying background displayed on an OLED has 

not been achieved yet. This also meant that if a model could take 

into account the effect each background has on the overall 

colorimetry of the OLED display, then such a model could be 

plausible. This hypothesis effectively meant a way to connect 

colorimetry to the background image on an OLED display. For this 

it is important to define a metric that can describe a background 

image. 

As mentioned earlier, the average luminance of an OLED 

display is driven by the power it consumes. Studies by Gerhardt et 

al. [11], [12] proposed a methodology to predict the lifetime of an 

OLED display based on the power consumption of different 

images. With this algorithm, the LifeTime (LT) of an OLED 

display is calculated. The work done in our present study takes 

inspiration from such studies and puts forward a new way to 

connect the power consumption of an image with the colorimetry 

that the display will portray in its presence. Thus, a color 

characterization model for an automatic brightness limiting 

algorithm enabled OLED display is put forward, which takes into 

consideration the actual pixel-wise composition of an image 

background displayed and predicts the colorimetry of an OLED 

display.  

Method 
The OLED Panel: An eight inches AMOLED panel was used 

for this study. The panel had a MIPI Display Serial Interface [13] 

which had an HDMI input. The HDMI input was used to display 

stimulus on this display using Windows and Psychtoolbox-3. The 

peak luminance of the display for a 2% APL white was 650 cd/m2. 

The OLED Panel used for the current study had APL dependent 

ABL. This meant that based on the content of the frame buffer, the 

power of the OLED panel is regulated/limited. If the APL was high, 

the peak luminance was reduced, and vice versa. Apart from this, 

there was also an additivity failure between primaries.  

As can be seen in Figure 1, the sum of the red, green and blue 

primaries did not add up to the luminance of white. This was 

observed for all gray levels. Moreover, the difference between the 

sum of the red, green and blue primaries with the white was not the 

same across all gray levels, which made a characterization model 

based on an associated loss function difficult.   

 

 

 
Figure 1: Power consumption of R, G and B channels of the OLED display 

showing additivity failure. 

 

 

 

 
Figure 2: For different APL levels, a linear increase in power consumption 
was observed. A pure white pattern is shown in this example 
(R=G=B=255). 

 

The testing done for this research showed that similar power 

consumption between two different images resulted in similar peak 

white luminance and overall color gamut volume. For example, the 

power consumption of  

Figure 3 are 3.4 (complex image) and 3.5 (30% APL White) 

Watts (W) respectively, resulting in peak white luminance of 585 

and 575 cd/m2 respectively and their overall color gamut was also 

comparable. 

  

  
 
Figure 3: Left: A natural image having a power consumption of 3.4 
Watts and Right: A white having 30% APL on the display having a 
similar power consumption of 3.5 Watts, both resulting in similar 
absolute color gamuts. 

 

Taking inspiration from this finding, it was clear that if a 

procedure can be designed to calculate the power consumption of 

an image, its gamut should be similar to a white pattern with a 
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similar power consumption. Thus, the approach to calculate the 

gamut of the OLED display comprised of two stages: 

 

1. Calculate the power requirements of the displayed image 

on a pixel by pixel basis.  

2. Interpolate the colorimetric values based on the power 

consumed by each pixel to find the colorimetry of each 

pixel. 

 

Stage 1: 
1. Create a power (Watts) database for a regular grid of 

RGB values shown full screen (100% APL respectively, 

see Figure 4, left). The granularity of the R, G and B 

values is 0.1, 0.1 and 0.1 on a scale of 0 to 1, thereby 

resulting in 1331 combinations. This defines how much 

power a particular combination of RGB consumes when 

displayed full screen.  

2. Divide this power by the resolution of the display to 

convert full screen power to per pixel power for the RGB 

combinations. 

3. Create a 3-D interpolation model to convert RGB values 

of a pixel to the power consumed by this combination 

using point 1 and 2.  

4. Apply this model pixel wise for any image rescaled to 

the resolution of the display used for creating the power 

database in point 1 to convert any image to the power it 

will consume if displayed on the display panel used in 

point 1.  

 

The peak power consumption of the panel was for a full screen 

white (full screen R, G, B = 255, 255, 255) at ~6.5W while for no 

content shown on the panel (full screen R, G, B = 0, 0, 0) is was 

~2.1W.  

 

Stage 2: 
Different window sizes of white patterns were displayed on 

the display panel (see Figure 4, right) and their power consumption 

was recorded using the ChargerLab Power-Z KM003C voltmeter 

[14]. This was done using the integration of the database saving 

feature of the voltmeter with MATLAB and the patterns were 

shown synchronized with the data recording using Psychtoolbox 

(PTB-3) [15]. For each of these white patterns, 175 RGB color 

combinations (2% APL) were displayed and their colorimetry was 

recorded using an i1 X-Rite Display colorimeter by integrating 

ArgyllCMS libraries with MATLAB [16]. This colorimeter was 

used despite using an OLED display because of the reliable 

implementation of correction matrix needed for a 

colorimeter  reducing the calibration needed for the instrument, and 

making it less dependent on the exact type of display technology 

[17]. With this dataset, the color characteristics and gamut volume 

of the white patterns for a particular power usage can be calculated 

which in turn could be linked to any RGB image having similar 

power requirements of the white pattern. This dataset was created 

for 10 area coverage cases for the display panel ranging from a 

white pattern covering the entire width of the panel but 10% to 

100% of the height of the panel in steps of 10% increments. The 

colorimetry of any other power consumption could be interpolated 

by using the colorimetry data of these 11 cases (10 white patterns 

and 1 for no content (pure black background but displaying the 175 

RGB colors)) using 3-D interpolation.  

 

  
Figure 4: Setups showing the AMOLED panel connected to the 

ChargerLAB KM003C Voltmeter which is saving live power consumption 
data to a MySQL database via its software. Left: Stage 1 dataset is 
captured by displaying 1331 RGB combinations full screen. Right: Whites 
at different APL levels (different heights) is displayed (60% in the example), 
with 175 RGB colors displayed on top and measured with a colorimeter.  

 

 

The schematic of the workflow can be seen in Figure 5. The 

first stage captures the power consumption pattern of the OLED 

panel by displaying sequential full screen RGB patterns (1331 in 

total). Using this data, power/pixel is calculated for the display 

panel. For any image (for example, the sunflowers image shown in 

Figure 5), the RGB values of each pixel is used to calculate the 

power consumption of the image using the data from stage 1. Let 

us assume that the total power consumption of this image was X 

Watts. Stage 2 data provided the power consumption of pure white 

patterns covering different APL levels for 11 cases (10 measured 

with different white percentages and one with no white pattern) as 

well as the associated colorimetry. Stage 2 dataset was then used to 

interpolate the colorimetry for X Watts using 3-D interpolation.    

 

 
Figure 5: Schematic describing an example of the workflow for predicting 
the colorimetry of an APL dependent OLED display panel. 

 

Verification of the model 
Nineteen images from the DXOMARK perceptual images 

dataset were used as backgrounds for verifying the performance of 

the algorithm (see Figure 6). The 19 images were representative of 

varied APL cases. The power consumption of these 19 background 

images (displayed with PTB-3) was calculated with the 

methodology explained above (Stage 1) and the real consumption 

was also recorded using the integration of the ChargerLAB 
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Figure 6: Left: DXOMARK perceptual images dataset comprising of 19 images having varied contents. 

 

 

 Stage 1 Stage 2 

Image 

Name 

Power 

(W) Calculated 

by Algorithm 

[A] 

Power (W) 

Measured by 

VoltMeter [B] 

Power 

Prediction Error 

% [A-B] 

Predicted 

CIEDE2000 

Mean 

Predicted 

CIEDE2000 95 

%ile 

'1.jpg' 2.78 2.88 -3.37 0.48 1.42 

'10.jpg' 3.05 3.19 -4.34 1.00 1.76 

'11.jpg' 3.50 3.66 -4.35 2.09 2.79 

'12.jpg' 3.23 3.37 -4.29 1.58 2.20 

'13.jpg' 4.58 4.83 -5.09 4.78 6.23 

'14.jpg' 3.97 4.18 -4.92 3.49 4.65 

'15.jpg' 3.70 3.84 -3.51 2.72 3.55 

'16.jpg' 3.29 3.34 -1.46 1.49 2.15 

'17.jpg' 3.76 3.91 -3.72 2.79 3.62 

'18.jpg' 3.79 3.97 -4.48 2.87 3.70 

'19.jpg' 3.57 3.68 -3.21 2.23 2.97 

'2.jpg' 2.64 2.71 -2.45 0.61 1.49 

'3.jpg' 2.42 2.47 -2.06 0.71 1.52 

'4.jpg' 4.56 4.83 -5.56 4.72 6.15 

'5.jpg' 3.77 3.68 2.60 2.44 3.34 

'6.jpg' 3.01 3.04 -1.06 1.13 1.81 

'7.jpg' 3.02 2.95 2.25 0.95 1.70 

'8.jpg' 3.76 3.91 -4.01 2.84 3.69 

'9.jpg' 3.56 3.76 -5.29 2.61 3.44 

      

MEAN   3 2.18 3.06 
 

 
Table 1: Performance of the power consumption based OLED color characterization model. 
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Voltmeter application with MATLAB. With this, the accuracy of 

the power model with the real power consumption was calculated 

(see Table 1). Afterwards, the images were displayed with PTB-

3 and on top of them, 175 RGB color patches sized 2cm by 2cm 

were displayed and their colorimetry was recorded using a 

colorimeter (see Figure 7), referred to as C1.  

 

Figure 7: Setup to collect verification ground truth data by capturing the 
colorimetry of 175 RGB color patches displayed on the top of 19 
DXOMARK perceptual images. These colorimetric measurements are 
compared with the predicted colorimetric values with the results of stage 
2 and quantified using CIEDE2000. 

Using the predicted power (from stage 1 power model), the 

colorimetry of the 175 RGB patches displayed on top of each of 

the 19 images was also predicted (using the dataset and 

interpolation methodology of Stage 2), referred to as C2. The 

mean color difference using CIEDE2000 between 175 C1 and C2 

RGB colors was calculated for the 19 images-background cases 

to quantify the performance of the entire workflow (see Table 1).  

Results 
It was found that the power prediction model had an average 

error of  -3 percent. The mean and 95 percentile CIEDE2000 for 

the predicted colorimetry of the 175 RGB color patches displayed 

on top of the 19 background images can be seen in Table 1. For 

all 19 images combined, the mean of mean and the mean of 95 

percentile CIEDE2000 was 2.18 and 3.06 units respectively, 

indicating good performance.  

Conclusion and Future Work 
As the colorimetry prediction of the combined model was 

found to be good, such an approach could be used to create 

forward characterization models for APL/content dependent 

OLED displays. This data could be used as an input to ICC 

profiling software (such as Argyll CMS) to encode the forward 

and reverse direction characterization of such displays into an 

ICC profile. Reverse characterization data from such ICC profiles 

can be used as reliable models to predict RGB values to reproduce 

specific CIEXYZ values on such displays [18]. In the future, the 

authors aim to use this approach to reproduce target CIEXYZ 

values for conducting various psychophysical experiments using 

this OLED panel. The authors also aim to refine this model further 

to make it adaptable for cases where the display’s peak brightness 

is changed by using its OSD controls. For example, if the display 

peak brightness is limited to 50 cd/m2 instead of 650 cd/m2, a 

scaling factor would be needed for this model.     
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