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Abstract 
We consider the estimation of surface roughness to reproduce 

the appearance of objects with smooth and glossy surfaces such as 

lacquerware and plastic objects. Two methods comprising 

measurement-based and image-based roughness are used for 

estimation. First, a laser scanning system is used to measure the 

microscopic surface height of the target object and calculate the 

surface normal vectors at every grid point from the height 

information. The surface roughness is then calculated as the 2D 

deviation of the surface normal vectors. Next, the Beckmann 

roughness parameter is then estimated using a high-dynamic-range 

(HDR) image captured from a flat surface of the target material. 

The specular lobe is approximated using the Beckmann distribution 

function with a surface roughness parameter. Furthermore, images 

are rendered to reproduce the surface appearance and confirm the 

reliability of the estimated roughness parameters. We study the 

relationship between the measurement- and image-based roughness 

and find a linear relationship between them. The Beckmann 

roughness parameter required for image rendering is predicted 

from the measured roughness. 

Introduction  
Lacquerware refers to objects covered with lacquer. 

Lacquerware includes tableware, containers, furniture, daily 

necessities, and various small and large objects carried by people. 

East Asian countries such as Japan, China, and Korea have long 

traditions of lacquer work that date back to several thousands of 

years [1]. The best-known lacquer is a urushiol-based lacquer 

common in East Asia obtained from the dried sap of Toxicodendron 

vernicifluum [2]. 

Most lacquerware is handmade. Every lacquerware object 

made with the traditional technique, which has been in use for more 

than 900 years, is produced using natural wood and urushi lacquer. 

However, the use of traditional lacquerware has decreased recently 

because of the increase in cheaper plastic-based lacquerware-like 

objects. Plastic lacquerware-like objects are so well-made that it is 

difficult to judge whether an object is plastic or real lacquerware 

through a casual glance. 

Figure 1 shows a comparison between two red sake cups. The 

left cup is a real lacquer cup and the right one is a synthetic plastic 

cup. Both cups have strong gloss and radiance and a beautiful 

surface appearance. Unlike natural lacquerware handmade by 

craftsperson, most synthetic object is mass-produced through 

molding by pouring plastic into a mold.  

In this study, we analyze the surface characteristics of 

lacquerware and plastic objects to reconstruct the appearance of 

such strongly glossy objects. The overall appearance of three-

dimensional (3D) objects results from a combination of the 

chromatic factor of the surface spectral reflectance and geometric 

factors such as the surface shape and texture. It is however not 

possible to distinguish between real lacquerware and plastic objects 

based only on their spectral reflectance and 3D surface shapes. We 

believe that the appearance of the surfaces is also affected by the 

surface microstructure. 

The surface roughness is a measure of the microscopic surface 

structure. It is quantified by the height deviation along the vertical 

direction relative to that in the surface shape of an object with an 

ideal surface. A variety of methods to measure the surface roughness 

have been proposed for industrial surface inspection [3]. The 

International Organization for Standardization (ISO) specifies the 

well-known standard roughness parameter, Ra, in ISO 4287:1997. 

However, Ra does not necessarily match the perceived appearance 

of the surface roughness on an object. Instead, the perceived 

appearance of the surface roughness is correlated with the deviation 

of the surface normal vectors. Ohtsuki et al. [4] analyzed the surface 

roughness of human skin, and Oren and Nayar [5] proposed a 

reflection model for rough surfaces such as concrete and sand in 

which the surface normals of the surfaces are described using 1D 

Gaussian distributions. 

So far, function models that use roughness as a parameter, such 

as the Beckmann function [6], have often been used to render the 

realistic appearance of objects [7]-[11].  However, such a roughness 

is merely a roughness parameter in a mathematical model and does 

not necessarily represent the actual physical roughness. 

In the present study, we define a 2D surface roughness for a 

glossy smooth object surface, which differs from that for a matte 

object. The surface layers of lacquerware and plastic objects are 

optically regarded as inhomogeneous dielectric materials. Their 

reflection behavior can be described using a dichromatic reflection 

model in which the spectral composition of light reflected from the 

object surface is decomposed into two additive components 

comprising the diffuse (body) reflection and specular (interface) 

reflection components [12-14]. The specular profile, which 

represents the reflection distribution around a specular highlight, 

plays an important role in determining the appearance of a material 

[15].  

We first use a laser scanning system to measure the 

microscopic surface height of the target object and calculate the 

surface normal vectors at every grid point using the height 

information. The surface roughness is defined based on the 2D 

deviation of the surface normals.  

We then estimate the roughness parameter from camera images 

of the same target object. The shape of the specular lobe generated 

by dichromatic reflection has a significant dependence on the 

surface roughness. The specular lobe is approximated using the 

Beckmann distribution function with a surface roughness parameter, 

which is estimated from the captured high-dynamic-range (HDR) 

image of a flat surface of the target material. 
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Furthermore, we study the relationship between the surface 

roughness obtained by directly measuring the object surface, which 

we call the measurement-based roughness, and the surface 

roughness estimated from the camera data, which we call the image-

based roughness, and find that there is a linear relationship between 

the two types of roughness. Thus, the roughness parameter required 

for image rendering can be predicted from the roughness obtained 

using surface measurements.  

 

 
Figure 1. Comparison of two red sake cups. The left cup is a real lacquer cup 

and the right one is a synthetic plastic cup. 

Measurement-Based Roughness Estimation 
The laser scanning system was used to obtain the precise 

surface height information of the target objects. The system consists 

of an XY stage and a laser confocal displacement meter (Keyence, 

Model LT8110). The surface of the object was scanned with high 

accuracy at a resolution of 5 m. The advantage of this measurement 

system is that unlike a camera system, there is no lens distortion 

owing to the direct measurement of the surface. 

The surface heights at tiny rectangular areas on the surface of 

the target object, each with the dimensions of 1 mm0.5 mm, were 

measured with a pitch of 5 m, and the entire height profile was 

obtained over 201101 grid points. Because the target surface was 

not perfectly flat, the base surface was determined via smoothing 

using a moving average and the height deviation was calculated as 

the difference between the measured and base heights. The 

measurements may vary depending on the location of the cutout. 

However, since it is physically difficult to measure a wide area, we 

chose to measure such a small area. 

We measured the surfaces of different examples of real 

lacquerware and opaque plastic objects. Figure 2 shows the 

measured height deviation distributions of the surfaces using meshes 

where panels (a) and (b) show the measurement results for the real 

lacquerware and plastic objects, respectively. The unit of the z-axis 

scale is mm. 

The MATLAB function pcnormals was used to estimate the 

surface normal vectors from the height data. In this function, the six 

neighboring points to each point are used for local plane fitting to 

determine the normal vector at the point [16]. The 3D distributions 

of the normal vectors suggest that the surface features of the 

lacquerware and plastic objects are significantly different. As an 

example, Figure 3 shows the differences in the 3D distributions of 

the surface normals between lacquerware and plastic, where red and 

black represent the red urushi flat plate lacquerware and black 

acrylic flat plate plastic object, respectively. The surface normals of 

the lacquerware are widely distributed whereas those of the plastic 

object are mostly oriented toward the zenith. 

Figure 4 shows images shaded using the surface normals 

obtained at the grid points over the surface of each object in Figure 

2. The illumination was assumed to be incident at 45°. A comparison 

of the two sets of images in Figure 4(a) and (b) shows that the 

surfaces of the real lacquerware are rougher than those of the plastic 

objects. The surface roughness R is defined as the deviation from 

the average surface normal vector as follows:  

Let N be the total number of surface normal data points. The 

surface normal vector 𝒘𝑖  (i=1, 2, …, N) at the ith point and the 

averaged vector 𝒘0 are described using 3D column vectors as 
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where 𝑠𝑖𝑛 𝜃𝑖  is the length of the perpendicular line drawn from the 

tip of the vector 𝒘𝑖to 𝒘0 (see Figure 5). That is, J is the mean of the 

squares of the lengths of the perpendicular lines drawn from each 

i
w to the average vector 𝒘0 . Therefore, the square root of J, 

√𝐽(≜ 𝑅), is the standard deviation of the surface normal vectors, 

that is, the surface roughness R defined above. 

The values of the surface roughness R were calculated from the 

normal data of the lacquerware and plastic objects using Eq. (5) and 

found to be as follows: 

 

For lacquerware, R1=0.294, R2=0.260.  

For plastic objects, R1=0.0310, R2=0.0631. 

 

Thus, even though the surfaces of the lacquerware appear smooth 

microscopically, they are considerably rougher than the surfaces of 

the plastic objects. 
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                                                (a) 

 

                                               (b) 
Figure 2. Measured height deviation distributions displayed using meshes: (a) 

real lacquerware, (b) plastic objects. 

 
Figure 3. 3D distribution of the surface normals for lacquerware and plastic 

where red and black represent the lacquerware urushi red plate and the 

plastic acrylic black plate, respectively. 

(a)

(b) 
Figure 4. Images shaded using the surface normals at the grid points on each 

surface in Figure 3 for illumination incident at 45°. 

 
Figure 5. Relationship between surface normal and averaged vectors. 

Image-Based Roughness Parameter 
Estimation 

We estimate the roughness parameter for each object measured 

using the laser scanning system from camera images of the same 

object. The specular function of a dielectric material is a 

mathematical function used to model its specular reflection. This 

function does not include color (spectral) information but mainly 

reflects the geometric information of the specular surface, which 

depends on the surface orientation, illumination, and viewing 

direction. Therefore, it can accurately represent the appearance of a 

glossy material using parameters related to its roughness and 

sharpness. 

Consider a simple reflection geometry in which N is the surface 

normal vector, L the incident light vector, and V the viewing vector. 

Let 𝑹𝐿and 𝑹𝑉be L and V mirrored about N, respectively. Specular 

reflection is observed only within a restricted range of viewing 

angles. This reflection component is often the strongest along the 

direction of 𝑹𝐿and falls off sharply as the angle  between 𝑹𝐿and 

V increases. This rapid falloff is often approximated as  

( ) cos
n

f   =
                                                           (8) 

where 𝛽 is a constant representing the specular peak intensity and n 

is a measure of the surface roughness. This type of intensity 

distribution is called the Phong distribution [7]. If the highlight has 

a pointed peak, a Gaussian distribution can be used to model the 

sharp falloff as follows:  

( )2
( ) expf n  = −                                                  (9) 

However, simple specular functions such as the Phong 

distribution cannot describe the surface specularity of rough 

surfaces adequately because the constant parameters are unknown. 

In addition, there is always some surface roughness even if the 

surface appears smooth. The shape of the specular reflection lobe 

generated by dichromatic reflection depends significantly on the 

surface roughness. Rough specular surfaces are idealized as being 

composed of small planar surface patches called microfacets.  

The Beckmann distribution is a physics-based microfacet 

distribution model [6]. The specular lobe can be approximated using 

the Beckmann distribution function with a surface roughness 

parameter m as 

 ( ) 2

2 4

1
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cos
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where m represents the roughness of the object surface.   is the 

angle between Q and N where Q is the vector bisector of L and V. 

Compared to the empirical models in Eqs. (8) and (9) above, this 

function gives the absolute magnitude of the reflectance without the 

need to introduce arbitrary constants.  

To estimate the Beckmann roughness parameter from camera 

images, we consider a simple measurement setup. Figure 6 shows 

the capture process for a glossy flat object surface where the light 

source and camera are placed at a high vertical position and the 

curve represents the 1D reflection distribution. In this case, the 

angles   and   are both equal to the viewing angle. In the actual 

system we used, the distance between the object and light source 

(camera) was 1040 mm, and the light source was a small LED. We 

used a digital single-lens reflex (DSLR) camera (Sony alpha 7C) 

with a bit depth of 14 bits for each color signal. The camera images 
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were captured in the lossless SONY-ARW raw image format. The 

captured images of the object surface include glosses or highlights. 

Numerous images were captured by changing the shutter speed and 

then linearly combined to obtain an image without saturation and 

with the highest dynamic range as a HDR image of the target surface. 

Figure 7 shows the HDR images captured from the (a) urushi 

red plate and (b) acrylic black plate. Relative values were calculated 

from the captured images based on a white reference standard with 

a matte surface photographed under the same conditions. Figure 8 

shows the corresponding mesh representations of the luminance 

intensity distributions for (a) and (b). The mesh size is 512 × 512, 

and each pixel corresponds to approximately 0.0246°. Assuming 

that the reflection is symmetric, the 1D profile of the intensity 

distribution can be fitted to the Beckmann function in Eq. (10). For 

visual matching of the appearance, fitting in the wider highlight lobe 

in the glossy HDR images is more significant than fitting in the 

highlight peak point. Therefore, the inverse gamma correction 

nonlinear transformation was applied to the pixel intensity values I 

as 
1/ ,Z I


= where γ was set to 2.0 as in the previous HDR image 

analysis [17]. There is no essential difference even if γ=2.2 is used.  

Figure 9 shows the results of least-squares fitting to the Beckmann 

distribution, where each 1D dimensional distribution is one-

dimensional distribution along the X-direction in the 2D distribution 

of Figure 8.  The fitting results are represented as functions of the 

viewing angle where the black and red curves represent the HDR-

measured curve and the fitted Beckmann function, respectively. The 

roughness parameters are m=0.01859 and m=0.002288 for (a) and 

(b), respectively. The original measured curve in (b) is almost 

coincident with the fitted Beckmann distribution. 

 
Figure 6. Image capture setup for a glossy flat object surface. 

  (a)    (b) 
Figure 7. HDR images captured from the (a) urushi red plate and (b) acrylic 

black plate. 

 

                   (a)                                                    (b) 
Figure 8. Corresponding mesh representations of the luminance intensity 

distributions: (a) urushi red plate and (b) acrylic black plate. 

 

                           (a)                                            (b) 
Figure 9. Least-squares fitting results for the Beckmann distribution where the 

black and red curves represent the HDR measured curve and the fitted 

Beckmann function, respectively: (a) urushi red plate and (b) acrylic black 

plate. 

Appearance Reproduction Using Estimated 
Roughness Parameters 

The Cook–Torrance model [8] is used as a reflection model to 

reproduce the realistic appearance of glossy objects under various 

conditions. The spectral reflection model for the color signal, which 

includes the light source and reflectance, is given by 
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where the first and second terms in the right hand side represent the 

diffuse and specular reflection components, respectively,  c is a 

constant, ( )E   the spectral power distribution of the light source, 

𝑆𝑑(𝜆) the spectral reflectance for the diffuse reflection component, 

𝑆𝑝(𝜆) the spectral reflectance for the specular reflection component, 

𝐹0  the Fresnel reflectance at normal incidence, ( )f   the 

Beckmann distribution function in Eq. (10), and G the geometric 

attenuation factor describing self-shadowing due to the microfacets 

(see [13]). 

We used the physical spectral renderer Mitsuba [17] to predict 

the reflection based on an underlying Monte Carlo simulation. The 

Cook–Torrance model was implemented in the renderer by 

Guarnera [15]. The reflectance and illuminance spectral functions 

were represented in 5 nm intervals within the wavelength range of 

400–700 nm. A perspective camera model was used to set the field 

of view such that the rendered image fitted the acquired image. The 

location and orientation of the camera and lighting were adjusted to 

match the actual camera images. An output image with the size of 
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512 by 512 pixels was spectrally rendered. The 3D shape data of the 

objects acquired using a 3D scanner were input as OBJ files. The 

spectral reflectance 𝑆𝑑(𝜆) and illuminant distribution ( )E   from 

the target object and the actual light source were measured using a 

spectral colorimeter and spectral radiometer, respectively. The 

specular reflectance 𝑆𝑝(𝜆) was set to 1. The attenuation factor G 

could be regarded to 1 (no shadowing) in the usual observation 

condition for a smoothed surface. The color signal C obtained at 

each pixel was converted into the tri-stimulus values XYZ and 

sRGB.  

We first confirm the reliability of the estimated roughness 

parameters in the rendered images. Figure 10 shows the images of 

the (a) urushi red plate and (b) acrylic black plate rendered in 

Mitsuba based on the setup shown in Figure 6. The light source was 

assumed to be a point light source. The intensity profile around the 

specular peak was obtained from each rendered image and its 

distribution compared with those of the original measured intensity 

and fitted Beckmann distributions. Figure 11 shows a comparison 

between the specular profiles of the original measured intensities 

and those of the fitted Beckmann and rendered image intensity 

distributions. The rendered images reproduce the estimated 

Beckmann distributions well. In particular, in (b), the three curves 

are so similar that they are indistinguishable. 

It should be noted that it is difficult to estimate the Beckmann 

roughness parameter for a curved object surface because the 

estimation method is limited to a flat object surface, as shown in 

Figure 6. Therefore, we estimated the Beckmann roughness 

parameter from the measurement-based roughness values obtained 

using the laser scanning system. The measurement-based roughness 

R and the corresponding image-based Beckmann roughness 

parameter m were obtained for five flat objects comprising the 

acrylic black plate, PVC black plate, urushi red plate, urushi black 

plate, and urushi cover surface. 

The calculated correlation coefficient between each R and m 

element pair, corr(R, m) = 0.9899. This indicates that there is a 

strong correlation between the measurement-based roughness 

values and the image-based Beckmann roughness parameters. 

Therefore, to predict the Beckmann roughness parameters from the 

measured roughness values, we created a simple linear regression 

model 

   0 1
R c c m = + +

,                                                     (12) 

where   is the error term. The coefficients 𝑐0and 𝑐1 were estimated 

by least-squares fitting of the data for flat objects as 𝑐0=-6.156e-04 

and 𝑐1=0.0712, respectively. Figure 12 shows the fitting results for 

the regression line. Note that 𝑐0 is almost zero; therefore, the 

regression line passes through the origin. 

The Beckmann roughness parameters for the lacquer and 

plastic cups in Figure 1 were hence estimated as 𝑅1=0.0185 and 

𝑅2=0.0043, respectively. Figures 13(a) and (c) show the images 

rendered using the estimated values for the surface roughness of the 

lacquer and plastic cups. The light source was assumed to be 

directional and illuminating the surface in a direction slightly shifted 

from the vertical direction of the cup with the same spectral 

distribution as that of the LED. The image in Figure 13(c) was 

rendered using the 3D shape of the lacquer cup, but the actual plastic 

reflectance was used for comparison with the appearance of the 

lacquer cup. Figures 13(b) and (d) show the respective actual images 

for comparison. The appearance in (a) and (b) is slightly different. 

 

  

                     (a)                                            (b) 
Figure 10. Images of (a) urushi red plate and (b) acrylic black plate rendered 

by Mitsuba based on the setup in Figure 7.  

 

                       (a)                                              (b) 
Figure 11. Comparison between the specular profiles of the original measured 

intensity (black) and the fitted Beckmann (red) and rendered (blue) image 

intensity distributions: (a) urushi red plate, (b) acrylic black plate. 

 
Figure 12. Regression line fitting result for measurement- and image-based 

roughness. 

 (a)  (b) 
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 (c)  (d) 
Figures 13. Images rendered using the estimated values of the surface 

roughness 
1

R  and 
2

R  for the (a) lacquer and (c) plastic cup, and the 

corresponding actual images (b) and (d) for comparison.  

Conclusions 
In this study, we have considered the estimation of surface 

roughness to reproduce the appearance of smooth and glossy object 

surfaces such as lacquerware and plastic objects. The surface layer 

was modeled as an inhomogeneous dielectric material and the light 

reflection was described using a dichromatic reflection model. We 

presented two forms of roughness, namely, the measurement-based 

and the image-based roughness.  

We first used a laser scanning system to measure the 

microscopic surface height of the target object and calculated the 

surface normal vectors at every grid point from the height 

information. The surface roughness was then obtained based on the 

2D deviation of the surface normal vectors.  

We then estimated the roughness parameter from the camera 

images of the target object. The specular lobe was approximated 

using the Beckmann distribution function with a surface roughness 

parameter, which was estimated from the captured HDR image of a 

flat surface of the target material.  

Furthermore, we rendered images to reproduce the surface 

appearance and confirmed the reliability of the estimated roughness 

parameters. We studied the relationship between the measurement-

based and image-based roughness and found a linear relationship 

between the two types of roughness. The Beckmann roughness 

parameter required for image rendering could thus be predicted from 

the roughness obtained using surface measurements. 

Thus, although lacquer and plastic objects look very similar, it 

is possible to distinguish between them based on the difference in 

surface roughness. Our future work will involve increasing the 

number of object samples to demonstrate the generalizability of our 

finding of a linear relationship between roughness measurements 

and Beckmann function parameters.  Further, we will study the 

possibility of applying this to other objects than lacquer and plastic 

objects. 
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